Silicon ChipAre surface-mount devices less reliable than through-hole? - October 2025 SILICON CHIP
  1. Contents
  2. Publisher's Letter: Are surface-mount devices less reliable than through-hole?
  3. Subscriptions: The Fox Report by Barry Fox
  4. Feature: Techno Talk by Max the Magnificent
  5. Project: Seaside Sound Simulator by John Clarke
  6. Feature: Audio Out by Jake Rothman
  7. Feature: Precision Electronics Part 9: System Design by Andrew Levido
  8. Project: Compact HiFi headphone Amplifier Part 2 by Nicholas Vinen
  9. Back Issues
  10. Feature: Max’s Cool Beans: Weird & Wonderful Arduino Projects by Max the Magnificent
  11. Feature: The Fox Report by Barry Fox
  12. Project: Electric & Bass Guitar Pickguards by Brandon Speedie
  13. Feature: Circuit Surgery by Ian Bell
  14. Project: 3D Printer Filament Drying Chamber, Part 1 by Phil Prosser
  15. Feature: Nikola Tesla, the original ‘mad scientist’, Part 1 by Dr David Maddison
  16. PartShop
  17. Advertising Index
  18. Market Centre
  19. Back Issues

This is only a preview of the October 2025 issue of Practical Electronics.

You can view 0 of the 80 pages in the full issue.

Articles in this series:
  • The Fox Report (July 2024)
  • The Fox Report (September 2024)
  • The Fox Report (October 2024)
  • The Fox Report (November 2024)
  • The Fox Report (December 2024)
  • The Fox Report (January 2025)
  • The Fox Report (February 2025)
  • The Fox Report (March 2025)
  • The Fox Report (April 2025)
  • The Fox Report (May 2025)
  • The Fox Report (July 2025)
  • The Fox Report (August 2025)
  • The Fox Report (September 2025)
  • The Fox Report (October 2025)
  • The Fox Report (October 2025)
Articles in this series:
  • Techno Talk (February 2020)
  • Techno Talk (March 2020)
  • (April 2020)
  • Techno Talk (May 2020)
  • Techno Talk (June 2020)
  • Techno Talk (July 2020)
  • Techno Talk (August 2020)
  • Techno Talk (September 2020)
  • Techno Talk (October 2020)
  • (November 2020)
  • Techno Talk (December 2020)
  • Techno Talk (January 2021)
  • Techno Talk (February 2021)
  • Techno Talk (March 2021)
  • Techno Talk (April 2021)
  • Techno Talk (May 2021)
  • Techno Talk (June 2021)
  • Techno Talk (July 2021)
  • Techno Talk (August 2021)
  • Techno Talk (September 2021)
  • Techno Talk (October 2021)
  • Techno Talk (November 2021)
  • Techno Talk (December 2021)
  • Communing with nature (January 2022)
  • Should we be worried? (February 2022)
  • How resilient is your lifeline? (March 2022)
  • Go eco, get ethical! (April 2022)
  • From nano to bio (May 2022)
  • Positivity follows the gloom (June 2022)
  • Mixed menu (July 2022)
  • Time for a total rethink? (August 2022)
  • What’s in a name? (September 2022)
  • Forget leaves on the line! (October 2022)
  • Giant Boost for Batteries (December 2022)
  • Raudive Voices Revisited (January 2023)
  • A thousand words (February 2023)
  • It’s handover time (March 2023)
  • AI, Robots, Horticulture and Agriculture (April 2023)
  • Prophecy can be perplexing (May 2023)
  • Technology comes in different shapes and sizes (June 2023)
  • AI and robots – what could possibly go wrong? (July 2023)
  • How long until we’re all out of work? (August 2023)
  • We both have truths, are mine the same as yours? (September 2023)
  • Holy Spheres, Batman! (October 2023)
  • Where’s my pneumatic car? (November 2023)
  • Good grief! (December 2023)
  • Cheeky chiplets (January 2024)
  • Cheeky chiplets (February 2024)
  • The Wibbly-Wobbly World of Quantum (March 2024)
  • Techno Talk - Wait! What? Really? (April 2024)
  • Techno Talk - One step closer to a dystopian abyss? (May 2024)
  • Techno Talk - Program that! (June 2024)
  • Techno Talk (July 2024)
  • Techno Talk - That makes so much sense! (August 2024)
  • Techno Talk - I don’t want to be a Norbert... (September 2024)
  • Techno Talk - Sticking the landing (October 2024)
  • Techno Talk (November 2024)
  • Techno Talk (December 2024)
  • Techno Talk (January 2025)
  • Techno Talk (February 2025)
  • Techno Talk (March 2025)
  • Techno Talk (April 2025)
  • Techno Talk (May 2025)
  • Techno Talk (June 2025)
  • Techno Talk (July 2025)
  • Techno Talk (August 2025)
  • Techno Talk (October 2025)
  • Techno Talk (November 2025)
Articles in this series:
  • Audio Out (January 2024)
  • Audio Out (February 2024)
  • AUDIO OUT (April 2024)
  • Audio Out (May 2024)
  • Audio Out (June 2024)
  • Audio Out (July 2024)
  • Audio Out (August 2024)
  • Audio Out (September 2024)
  • Audio Out (October 2024)
  • Audio Out (March 2025)
  • Audio Out (April 2025)
  • Audio Out (May 2025)
  • Audio Out (June 2025)
  • Audio Out (July 2025)
  • Audio Out (August 2025)
  • Audio Out (September 2025)
  • Audio Out (October 2025)
  • Audio Out (November 2025)
Articles in this series:
  • Precision Electronics, Part 1 (November 2024)
  • Precision Electronics, Part 2 (December 2024)
  • Precision Electronics, part one (January 2025)
  • Precision Electronics, Part 3 (January 2025)
  • Precision Electronics, part two (February 2025)
  • Precision Electronics, Part 4 (February 2025)
  • Precision Electronics, part three (March 2025)
  • Precision Electronics, Part 5 (March 2025)
  • Precision Electronics, part four (April 2025)
  • Precision Electronics, Part 6 (April 2025)
  • Precision Electronics, Part 7: ADCs (May 2025)
  • Precision Electronics, part five (May 2025)
  • Precision Electronics, part six (June 2025)
  • Precision Electronics, Part 8: Voltage References (June 2025)
  • Precision Electronics, Part 9 - System Design (July 2025)
  • Precision Electronics, part seven (July 2025)
  • Precision Electronics, part eight (August 2025)
  • Precision Electronics Part 9: System Design (October 2025)
Items relevant to "Compact HiFi headphone Amplifier Part 2":
  • Compact HiFi Headphone Amplifier PCB [01103241] (AUD $7.50)
  • Dual Horizontal PCB-mounting RCA sockets (white/red) [RCA-210] (Component, AUD $2.50)
  • Compact HiFi Headphone Amplifier kit (Component, AUD $70.00)
  • Compact HiFi Headphone Amplifier PCB pattern (PDF download) [01103241] (Free)
  • Compact HiFi Headphone Amplifier panel drilling diagram (Panel Artwork, Free)
Articles in this series:
  • Compact HiFi Headphone Amp (December 2024)
  • Compact HiFi Headphone Amp (January 2025)
  • Compact Hi-Fi Headphone Amplifier, part one (September 2025)
  • Compact HiFi headphone Amplifier Part 2 (October 2025)
Articles in this series:
  • Max’s Cool Beans (January 2025)
  • Max’s Cool Beans (February 2025)
  • Max’s Cool Beans (March 2025)
  • Max’s Cool Beans (April 2025)
  • Max’s Cool Beans (May 2025)
  • Max’s Cool Beans (June 2025)
  • Max’s Cool Beans (July 2025)
  • Max’s Cool Beans (August 2025)
  • Max’s Cool Beans (September 2025)
  • Max’s Cool Beans: Weird & Wonderful Arduino Projects (October 2025)
  • Max’s Cool Beans (November 2025)
Articles in this series:
  • The Fox Report (July 2024)
  • The Fox Report (September 2024)
  • The Fox Report (October 2024)
  • The Fox Report (November 2024)
  • The Fox Report (December 2024)
  • The Fox Report (January 2025)
  • The Fox Report (February 2025)
  • The Fox Report (March 2025)
  • The Fox Report (April 2025)
  • The Fox Report (May 2025)
  • The Fox Report (July 2025)
  • The Fox Report (August 2025)
  • The Fox Report (September 2025)
  • The Fox Report (October 2025)
  • The Fox Report (October 2025)
Articles in this series:
  • Circuit Surgery (April 2024)
  • STEWART OF READING (April 2024)
  • Circuit Surgery (May 2024)
  • Circuit Surgery (June 2024)
  • Circuit Surgery (July 2024)
  • Circuit Surgery (August 2024)
  • Circuit Surgery (September 2024)
  • Circuit Surgery (October 2024)
  • Circuit Surgery (November 2024)
  • Circuit Surgery (December 2024)
  • Circuit Surgery (January 2025)
  • Circuit Surgery (February 2025)
  • Circuit Surgery (March 2025)
  • Circuit Surgery (April 2025)
  • Circuit Surgery (May 2025)
  • Circuit Surgery (June 2025)
  • Circuit Surgery (July 2025)
  • Circuit Surgery (August 2025)
  • Circuit Surgery (September 2025)
  • Circuit Surgery (October 2025)
  • Circuit Surgery (November 2025)
Items relevant to "3D Printer Filament Drying Chamber, Part 1":
  • Filament Dryer Control PCB [28110241] (AUD $7.50)
  • PIC16F15214-I/P programmed for the 3D Printer Filament Dryer [2811024A.HEX] (Programmed Microcontroller, AUD $10.00)
  • Firmware and 3D printing (STL) files for the 3D Printer Filament Dryer (Software, Free)
  • Filament Dryer Control PCB pattern (PDF download) [28110241] (Free)
  • 3D Printer Filament Dryer drilling templates (Panel Artwork, Free)
Articles in this series:
  • 3D Printer Filament Dryer, Part 1 (October 2024)
  • 3D Printer Filament Dryer, Part 2 (November 2024)
  • 3D Printer Filament Drying Chamber, Part 1 (October 2025)
  • 3D Printer Filament Drying Chamber, Part 2 (November 2025)
Articles in this series:
  • The life of Nikola Tesla, Part 1 (October 2024)
  • Nikola Tesla, Part 2 (November 2024)
  • Nikola Tesla, the original ‘mad scientist’, Part 1 (October 2025)
  • Nikola Tesla, the original ‘mad scientist’, Part 2 (November 2025)
Practical Electronics Editorial offices Electron Publishing Tel +61 2 9939 3295 (Australia) Email pe<at>pemag.au Web www.electronpublishing.com Address mail to: Electron Publishing (Australia) PO Box 194, Matraville NSW 2036 Australia Advertising enquiries +61 2 9939 3295 pe<at>pemag.au Editor Nicholas Vinen Publisher Nicholas Vinen Digital subscriptions Stewart Kearn Tel 07918 614662 Online Editor Alan Winstanley Web Systems Kris Thain Production Bao Smith Technical staff Tim Blythman, John Clarke Print subscriptions Practical Electronics Subscriptions PO Box 6337 Bournemouth BH1 9EH Tel 01202 087631 United Kingdom Email pesubs<at>selectps.com Technical enquiries We regret that technical enquiries cannot be answered over the telephone. We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. Questions about articles or projects should be sent to the editor by email: pe<at>pemag.au Projects and circuits All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it. Some projects and circuits published in Practical Electronics employ voltages that can be lethal. Do not build, test, modify or fix any mains-powered equipment unless you fully understand the safety aspects involved and you use an RCD (GFCI) adaptor. Component supplies Silicon Chip Publications may offer kits or other parts for making our projects, but not in all cases. When kits are not available, readers will need to find and source parts themselves. We advise readers to check that all parts are still available before commencing any project in a back-dated issue. Advertisements Although the proprietors and staff of Practical Electronics take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fide, the magazine and its publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or in inserts. The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture. Transmitters/bugs/telephone equipment We advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the UK. Readers should check the law before buying any transmitting or telephone equipment, as a fine, confiscation of equipment and/or imprisonment can result from illegal use or ownership. The laws vary from country to country; readers should check local laws. 2 Volume 54. No. 10 October 2025 ISSN 2632 573X Editorial Are surface-mount devices less reliable than through-hole? This month, I became aware of the idea that some people think that electronic devices populated with surface-mount devices (SMDs) are somehow less reliable than those made with the older-style throughhole parts. My first thought was to question why the packaging method of a device affects its reliability. For example, the good old TO-92 package BC546 is available in an SOT-23 SMD package, as the BC846. It has a lower dissipation rating of 310mW compared to 625mW, due to its smaller size, but the internals are identical. Other than failing to take that lower dissipation rating into account (which would be a design flaw, not a fault of the part), is there any reason to believe that a BC846 should not last as long as a BC546? In fact, SMDs were developed in the 1960s primarily for military and aerospace applications specifically because they were more reliable (and also more compact, which obviously helps when you’re trying to fit electronics in a rocket or aircraft). That’s because lead flex means that a component body on the end of leads will tend to move around in response to vibration and shocks. That stresses both the leads and the solder joints, risking eventual failure. That doesn’t mean SMDs are always better; they are more sensitive to board flex, for example. But in general, they are thought to be more reliable, are cheaper to make, take up less space, offer better RF performance due to the smaller size and so on. Of course, being smaller means you need better eyesight to see and work with them (unless you’re using a microscope), steadier hands and finer tools. The myth of SMDs being unreliable likely persists because poorlyengineered budget devices use them – not because the parts themselves are inherently inferior. When cheap gear fails, people open it up and see SMDs inside, and assume a causal link. When it comes to repairing devices, there are actually significant advantages to SMDs. Yes, you need more skill to work on them, but you can remove and reinstall them with access to just one side of the board. It’s also possible to ruin multi-layer boards with plated through-holes when removing through-hole parts (and it’s frustratingly difficult, too). Ultimately, the biggest obstacle to repair these days is lack of documentation or replacement parts, not the difficulty of replacing the failed components once you’ve identified them. I understand why people might not like to work with small, fiddly parts but they are not inherently any less reliable. Nicholas Vinen, Electron Publishing (Australia)* Publisher & Editor, Practical Electronics Magazine * a division of Silicon Chip Publications Pty Ltd. Practical Electronics | October | 2025