Silicon ChipTechno Talk - July 2025 SILICON CHIP
  1. Contents
  2. Publisher's Letter: ChatGPT can analyse circuit diagrams
  3. Subscriptions
  4. Feature: The Fox Report by Barry Fox
  5. Feature: Circuit Surgery by Ian Bell
  6. Project: Compact OLED Clock/Timer by Tim Blythman
  7. Feature: Techno Talk by Max the Magnificent
  8. Feature: Max’s Cool Beans by Max the Magnificent
  9. Back Issues
  10. Project: 180-230V DC Motor Speed Controller by John Clarke
  11. Feature: Precision Electronics, part seven by Andrew Levido
  12. Project: Repurposing the Mains Power-Up Sequencer by John Clarke
  13. Feature: Audio Out by Jake Rothman
  14. Project: Intelligent Dual Hybrid Power Supply,.Part 2 by Phil Prosser
  15. PartShop
  16. Market Centre
  17. Advertising Index
  18. Back Issues

This is only a preview of the July 2025 issue of Practical Electronics.

You can view 0 of the 80 pages in the full issue.

Articles in this series:
  • The Fox Report (July 2024)
  • The Fox Report (July 2024)
  • The Fox Report (September 2024)
  • The Fox Report (September 2024)
  • The Fox Report (October 2024)
  • The Fox Report (October 2024)
  • The Fox Report (November 2024)
  • The Fox Report (November 2024)
  • The Fox Report (December 2024)
  • The Fox Report (December 2024)
  • The Fox Report (January 2025)
  • The Fox Report (January 2025)
  • The Fox Report (February 2025)
  • The Fox Report (February 2025)
  • The Fox Report (March 2025)
  • The Fox Report (March 2025)
  • The Fox Report (April 2025)
  • The Fox Report (April 2025)
  • The Fox Report (May 2025)
  • The Fox Report (May 2025)
  • The Fox Report (July 2025)
  • The Fox Report (July 2025)
Articles in this series:
  • Circuit Surgery (April 2024)
  • STEWART OF READING (April 2024)
  • Circuit Surgery (April 2024)
  • STEWART OF READING (April 2024)
  • Circuit Surgery (May 2024)
  • Circuit Surgery (May 2024)
  • Circuit Surgery (June 2024)
  • Circuit Surgery (June 2024)
  • Circuit Surgery (July 2024)
  • Circuit Surgery (July 2024)
  • Circuit Surgery (August 2024)
  • Circuit Surgery (August 2024)
  • Circuit Surgery (September 2024)
  • Circuit Surgery (September 2024)
  • Circuit Surgery (October 2024)
  • Circuit Surgery (October 2024)
  • Circuit Surgery (November 2024)
  • Circuit Surgery (November 2024)
  • Circuit Surgery (December 2024)
  • Circuit Surgery (December 2024)
  • Circuit Surgery (January 2025)
  • Circuit Surgery (January 2025)
  • Circuit Surgery (February 2025)
  • Circuit Surgery (February 2025)
  • Circuit Surgery (March 2025)
  • Circuit Surgery (March 2025)
  • Circuit Surgery (April 2025)
  • Circuit Surgery (April 2025)
  • Circuit Surgery (May 2025)
  • Circuit Surgery (May 2025)
  • Circuit Surgery (June 2025)
  • Circuit Surgery (June 2025)
  • Circuit Surgery (July 2025)
  • Circuit Surgery (July 2025)
Articles in this series:
  • Techno Talk (August 2020)
  • Techno Talk (August 2020)
  • Techno Talk (September 2020)
  • Techno Talk (September 2020)
  • Techno Talk (October 2020)
  • Techno Talk (October 2020)
  • (November 2020)
  • (November 2020)
  • Techno Talk (December 2020)
  • Techno Talk (December 2020)
  • Techno Talk (January 2021)
  • Techno Talk (January 2021)
  • Techno Talk (February 2021)
  • Techno Talk (February 2021)
  • Techno Talk (March 2021)
  • Techno Talk (March 2021)
  • Techno Talk (April 2021)
  • Techno Talk (April 2021)
  • Techno Talk (May 2021)
  • Techno Talk (May 2021)
  • Techno Talk (June 2021)
  • Techno Talk (June 2021)
  • Techno Talk (July 2021)
  • Techno Talk (July 2021)
  • Techno Talk (August 2021)
  • Techno Talk (August 2021)
  • Techno Talk (September 2021)
  • Techno Talk (September 2021)
  • Techno Talk (October 2021)
  • Techno Talk (October 2021)
  • Techno Talk (November 2021)
  • Techno Talk (November 2021)
  • Techno Talk (December 2021)
  • Techno Talk (December 2021)
  • Communing with nature (January 2022)
  • Communing with nature (January 2022)
  • Should we be worried? (February 2022)
  • Should we be worried? (February 2022)
  • How resilient is your lifeline? (March 2022)
  • How resilient is your lifeline? (March 2022)
  • Go eco, get ethical! (April 2022)
  • Go eco, get ethical! (April 2022)
  • From nano to bio (May 2022)
  • From nano to bio (May 2022)
  • Positivity follows the gloom (June 2022)
  • Positivity follows the gloom (June 2022)
  • Mixed menu (July 2022)
  • Mixed menu (July 2022)
  • Time for a total rethink? (August 2022)
  • Time for a total rethink? (August 2022)
  • What’s in a name? (September 2022)
  • What’s in a name? (September 2022)
  • Forget leaves on the line! (October 2022)
  • Forget leaves on the line! (October 2022)
  • Giant Boost for Batteries (December 2022)
  • Giant Boost for Batteries (December 2022)
  • Raudive Voices Revisited (January 2023)
  • Raudive Voices Revisited (January 2023)
  • A thousand words (February 2023)
  • A thousand words (February 2023)
  • It’s handover time (March 2023)
  • It’s handover time (March 2023)
  • AI, Robots, Horticulture and Agriculture (April 2023)
  • AI, Robots, Horticulture and Agriculture (April 2023)
  • Prophecy can be perplexing (May 2023)
  • Prophecy can be perplexing (May 2023)
  • Technology comes in different shapes and sizes (June 2023)
  • Technology comes in different shapes and sizes (June 2023)
  • AI and robots – what could possibly go wrong? (July 2023)
  • AI and robots – what could possibly go wrong? (July 2023)
  • How long until we’re all out of work? (August 2023)
  • How long until we’re all out of work? (August 2023)
  • We both have truths, are mine the same as yours? (September 2023)
  • We both have truths, are mine the same as yours? (September 2023)
  • Holy Spheres, Batman! (October 2023)
  • Holy Spheres, Batman! (October 2023)
  • Where’s my pneumatic car? (November 2023)
  • Where’s my pneumatic car? (November 2023)
  • Good grief! (December 2023)
  • Good grief! (December 2023)
  • Cheeky chiplets (January 2024)
  • Cheeky chiplets (January 2024)
  • Cheeky chiplets (February 2024)
  • Cheeky chiplets (February 2024)
  • The Wibbly-Wobbly World of Quantum (March 2024)
  • The Wibbly-Wobbly World of Quantum (March 2024)
  • Techno Talk - Wait! What? Really? (April 2024)
  • Techno Talk - Wait! What? Really? (April 2024)
  • Techno Talk - One step closer to a dystopian abyss? (May 2024)
  • Techno Talk - One step closer to a dystopian abyss? (May 2024)
  • Techno Talk - Program that! (June 2024)
  • Techno Talk - Program that! (June 2024)
  • Techno Talk (July 2024)
  • Techno Talk (July 2024)
  • Techno Talk - That makes so much sense! (August 2024)
  • Techno Talk - That makes so much sense! (August 2024)
  • Techno Talk - I don’t want to be a Norbert... (September 2024)
  • Techno Talk - I don’t want to be a Norbert... (September 2024)
  • Techno Talk - Sticking the landing (October 2024)
  • Techno Talk - Sticking the landing (October 2024)
  • Techno Talk (November 2024)
  • Techno Talk (November 2024)
  • Techno Talk (December 2024)
  • Techno Talk (December 2024)
  • Techno Talk (January 2025)
  • Techno Talk (January 2025)
  • Techno Talk (February 2025)
  • Techno Talk (February 2025)
  • Techno Talk (March 2025)
  • Techno Talk (March 2025)
  • Techno Talk (April 2025)
  • Techno Talk (April 2025)
  • Techno Talk (May 2025)
  • Techno Talk (May 2025)
  • Techno Talk (June 2025)
  • Techno Talk (June 2025)
  • Techno Talk (July 2025)
  • Techno Talk (July 2025)
Articles in this series:
  • Max’s Cool Beans (January 2025)
  • Max’s Cool Beans (January 2025)
  • Max’s Cool Beans (February 2025)
  • Max’s Cool Beans (February 2025)
  • Max’s Cool Beans (March 2025)
  • Max’s Cool Beans (March 2025)
  • Max’s Cool Beans (April 2025)
  • Max’s Cool Beans (April 2025)
  • Max’s Cool Beans (May 2025)
  • Max’s Cool Beans (May 2025)
  • Max’s Cool Beans (June 2025)
  • Max’s Cool Beans (June 2025)
  • Max’s Cool Beans (July 2025)
  • Max’s Cool Beans (July 2025)
Items relevant to "180-230V DC Motor Speed Controller":
  • 180-230V DC Motor Speed Controller PCB [11104241] (AUD $15.00)
  • 180-230V DC Motor Speed Controller PCB pattern (PDF download) [11104241] (Free)
  • 180-230V DC Motor Speed Controller lid panel artwork and drilling templates (Free)
Articles in this series:
  • 180-230V DC Motor Speed Controller (July 2024)
  • 180-230V DC Motor Speed Controller (July 2024)
  • 180-230V DC Motor Speed Controller Part 2 (August 2024)
  • 180-230V DC Motor Speed Controller Part 2 (August 2024)
  • 180-230V DC Motor Speed Controller (July 2025)
  • 180-230V DC Motor Speed Controller (July 2025)
Articles in this series:
  • Precision Electronics, Part 1 (November 2024)
  • Precision Electronics, Part 1 (November 2024)
  • Precision Electronics, Part 2 (December 2024)
  • Precision Electronics, Part 2 (December 2024)
  • Precision Electronics, Part 3 (January 2025)
  • Precision Electronics, part one (January 2025)
  • Precision Electronics, part one (January 2025)
  • Precision Electronics, Part 3 (January 2025)
  • Precision Electronics, part two (February 2025)
  • Precision Electronics, Part 4 (February 2025)
  • Precision Electronics, Part 4 (February 2025)
  • Precision Electronics, part two (February 2025)
  • Precision Electronics, part three (March 2025)
  • Precision Electronics, part three (March 2025)
  • Precision Electronics, Part 5 (March 2025)
  • Precision Electronics, Part 5 (March 2025)
  • Precision Electronics, Part 6 (April 2025)
  • Precision Electronics, Part 6 (April 2025)
  • Precision Electronics, part four (April 2025)
  • Precision Electronics, part four (April 2025)
  • Precision Electronics, part five (May 2025)
  • Precision Electronics, Part 7: ADCs (May 2025)
  • Precision Electronics, part five (May 2025)
  • Precision Electronics, Part 7: ADCs (May 2025)
  • Precision Electronics, Part 8: Voltage References (June 2025)
  • Precision Electronics, part six (June 2025)
  • Precision Electronics, part six (June 2025)
  • Precision Electronics, Part 8: Voltage References (June 2025)
  • Precision Electronics, part seven (July 2025)
  • Precision Electronics, part seven (July 2025)
Items relevant to "Repurposing the Mains Power-Up Sequencer":
  • Mains Power-Up Sequencer PCB [10108231] (AUD $15.00)
  • Mains Power-Up Sequencer hard-to-get parts (Component, AUD $95.00)
  • Firmware (ASM and HEX) files for the Mains Power-Up Sequencer (Software, Free)
  • Mains Power-Up Sequencer PCB pattern (PDF download) [10108231] (Free)
  • Panel labels and cutting diagrams for the Mains Power-Up Sequencer (Panel Artwork, Free)
Articles in this series:
  • Mains Power-Up Sequencer, Pt1 (February 2024)
  • Mains Power-Up Sequencer, Pt1 (February 2024)
  • Mains Power-Up Sequencer, Pt2 (March 2024)
  • Mains Power-Up Sequencer, Pt2 (March 2024)
  • New use for Mains Sequencer (July 2024)
  • New use for Mains Sequencer (July 2024)
  • Mains Power-Up Sequencer, part one (February 2025)
  • Mains Power-Up Sequencer, part one (February 2025)
  • Mains Power-Up Sequencer, part two (March 2025)
  • Mains Power-Up Sequencer, part two (March 2025)
  • Repurposing the Mains Power-Up Sequencer (July 2025)
  • Repurposing the Mains Power-Up Sequencer (July 2025)
Articles in this series:
  • Audio Out (January 2024)
  • Audio Out (January 2024)
  • Audio Out (February 2024)
  • Audio Out (February 2024)
  • AUDIO OUT (April 2024)
  • AUDIO OUT (April 2024)
  • Audio Out (May 2024)
  • Audio Out (May 2024)
  • Audio Out (June 2024)
  • Audio Out (June 2024)
  • Audio Out (July 2024)
  • Audio Out (July 2024)
  • Audio Out (August 2024)
  • Audio Out (August 2024)
  • Audio Out (September 2024)
  • Audio Out (September 2024)
  • Audio Out (October 2024)
  • Audio Out (October 2024)
  • Audio Out (March 2025)
  • Audio Out (March 2025)
  • Audio Out (April 2025)
  • Audio Out (April 2025)
  • Audio Out (May 2025)
  • Audio Out (May 2025)
  • Audio Out (June 2025)
  • Audio Out (June 2025)
  • Audio Out (July 2025)
  • Audio Out (July 2025)
Items relevant to "Intelligent Dual Hybrid Power Supply,.Part 2":
  • Intelligent Dual Hybrid Power Supply PCB set (AUD $25.00)
  • Intelligent Dual Hybrid Power Supply regulator PCB [18107211] (AUD $7.50)
  • Intelligent Dual Hybrid Power Supply front panel control PCB [18107212] (AUD $2.50)
  • DSP Crossover CPU PCB [01106193] (AUD $5.00)
  • DSP Crossover LCD Adaptor PCB [01106196] (AUD $2.50)
  • PIC32MZ2048EFH064-250I/PT programmed for the Intelligent Dual Hybrid Power Supply [0110619A.HEX] (Programmed Microcontroller, AUD $30.00)
  • 128x64 Blue LCD screen with KS0108-compatible controller (Component, AUD $30.00)
  • Hard-to-get parts for the Intelligent Dual Hybrid Power Supply regulator board (Component, AUD $100.00)
  • Hard-to-get parts for the Intelligent Dual Hybrid Power Supply CPU board (Component, AUD $60.00)
  • LCD panel bezel for the Dual Intelligent Hybrid Power Supply (PCB, AUD $5.00)
  • Intelligent Dual Hybrid Power Supply firmware [0110619A.HEX] (Software, Free)
  • Intelligent Dual Hybrid Power Supply PCB patterns [18107211/2] (Free)
  • DSP Active Crossover/DDS/Reflow Oven PCB patterns (PDF download) [01106191-6] (Free)
Articles in this series:
  • Dual Hybrid Power Supply – Pt1 (February 2022)
  • Dual Hybrid Power Supply – Pt1 (February 2022)
  • Dual Hybrid Power Supply, part two (March 2022)
  • Dual Hybrid Power Supply, part two (March 2022)
  • Intelligent Dual Hybrid Power Supply, part one (June 2025)
  • Intelligent Dual Hybrid Power Supply, part one (June 2025)
  • Intelligent Dual Hybrid Power Supply,.Part 2 (July 2025)
  • Intelligent Dual Hybrid Power Supply,.Part 2 (July 2025)
A human in the loop Techno Talk HITL used to stand for hardware-in-the-loop (eg, hardware as part of a simulation). Now, HITL also stands for human-in-the-loop, where human judgement is added to automated systems. I’m rarely exposed to something new in isolation. Usually, it doesn’t take long before I’m up to my ears in more instances or variants of the same thing. Take robots, for example. In my previous column, we considered some of the latest and greatest developments in humanoid robots. As we noted in that column, human environments—like homes, offices and factories—are designed for humans. As a result, robots with legs are better than their wheeled counterparts for navigating things like stairs. Similarly, robots with humanoid arms and hands can employ tools, operate machines and manipulate objects that were intended for use by people. It’s also true that when robots look more like people, they can interact with humans more naturally, using familiar mannerisms (gestures, movements and motions). This facilitates their use in roles like companions, caregivers, receptionists and tutors; cases where human-like interaction will dramatically enhance the user experience (or is intrinsic to the role). First, the good news Robots have been around for quite some time. The first successful industrial robot in the modern sense was arguably the Unimate from Unimation Inc, which was first deployed in a General Motors factory in 1961. The Unimate was an industrial robot arm, not a humanoid robot, but it marked the first step (no pun intended) toward real-world robotics as we think of it today. Today’s robots are a world away from the Unimate. Some very impressive examples of humanoid robots are: • Apollo from Apptronik (https://youtu.be/pymvNott6nw) • Atlas from Boston Dynamics (https://youtu.be/I44_zbEwz_w) • Digit from Agility Robotics (https://youtu.be/0dexTZ7r02Q) • Optimus from Tesla (https://youtu.be/jQd128YTtQQ) • NEO Gamma from 1X (https://youtu.be/uVcBa6NXAbk) Now for the bad news These examples are on the cutting 24 edge of humanoid robotics. They can walk, balance, carry objects, climb stairs and perform basic manual tasks (sometimes with surprising grace). However, they also share several attributes and limitations that currently make them more futuristic marvels than everyday tools. For example, they rely on advanced, heavy-duty artificial intelligence (AI) for perception, decision-making, balance, navigation and manipulation tasks. These AIs are typically powered by artificial neural networks (ANNs), reinforcement learning and large-scale training datasets. In many cases, they depend on cloudbased assistance for complex tasks or learning. Despite their robust appearance, these robots are sensitive to falls, environmental challenges and unpredictable variables. So regular maintenance, calibration and software updates are essential. Their battery life is often measured in hours, not days. Charging and power management are still major concerns. Also, there are legal, ethical and safety concerns with robots interacting with humans in public or private spaces. Then there’s the cost. Estimates vary, but these robots can be in the hundreds of thousands of dollars range. Even Tesla’s Optimus, which might aim for a $20–30k (£15-22.5k) price point, is still far from affordable by the average person. Max the Magnificent only likely to get worse for businesses looking for staff. Perhaps this explains why Markets and Markets are predicting that the humanoid robot industry will exceed $17 billion by 2027, growing at a compounded annual rate of more than 50% from 2022. Meet TASKBOTs All of this leads us to TASKBOTs from REVOBOTS. These beauties can be fixed or mobile with one or multiple arms, where the arms can handle a 150-pound (70kg) payload. Their end-effectors (hands) can have sub-micron accuracy. One of the TASKBOT’s claims to fame is that its structural components are 3D-printed. In fact, REVOBOTS’ CTO, Kent Gilson, tells me that the entire body of a TASKBOT can be Feeling our age Developed countries like the UK are facing the problem of ageing populations. According to the folks at REVOBOTS (revobots.ai), by 2030, shrinking labour forces could leave over 85 million jobs unfilled, resulting in $8.5 trillion in lost annual revenue if nothing is done. High infl­ation and stagnant wages will compound the difficulty; the situation is Practical Electronics | July | 2025 Techno Talk Max the Magnificent produced using only around $1000 (£750) worth of raw materials. That sounds good to me! TASKBOTs are equally parsimonious on the computational front. Most of today’s humanoid robots are controlled by large language models (LLMs) that demand expensive, highend, power-guzzling processors. By comparison, the TASKBOT employs a set of small language models (SLMs) that are combined hierarchically, can be trained quickly and have a very small memory footprint. In fact, TASKBOT’s computational requirements can be satisfied by a $50 dual-core ZYNQ SoC (system-on-achip) FPGA (field-programmable gate array) from Xilinx/AMD in each arm, plus an Arduino to control the track subsystem in the base. A human in the loop The HITL initialism traditionally refers to a test method whereby real hardware components are integrated into a simulation or emulation environment to check their behaviour in a controlled setting. More recently, HITL has been adopted to mean human-in-the-loop, where humans actively participate in the training, evaluation, or operation of AI systems. HITL systems can learn and adapt to new situations more effectively by incorporating human feedback. Picture the scene—a new human worker turns up at a factory to work on a production line. The supervisor will show the locations of the restroom and canteen facilities and demonstrate what is required to do the job. Now, imagine a TASKBOT arriving in the same way. In this case, a remotely located human would use telepresence to control the robot. The supervisor would first guide the TASKBOT/ human combo to the battery bank (like taking a coffee break, the TASKBOT can change its own batteries when necessary). The supervisor would then demonstrate the job with the HITL replicating the actions (including recognising objects and manipulating them as required). At the same time, the TASKBOT’s sensors would be streaming everything to the cloud, which would then train the SLMs that would be downloaded into the TASKBOT’s processors. After that, the HITL would close the connection and then leave the TASKBOT to perform its duties. I tell you, every day the world gets weirder and more wonderful at the same time. I don’t know about you, but I’m excited about what these robots could do for us in the PE near future! FIND ALL YOUR ELECTRONIC COMPONENTS IN ONE PLACE BASIC MICRO E L E CT R O N I C S C O M P O N E N T S U P P L I E R w w w . basicmicro . co . u k High-quality, genuine parts Practical Electronics | July | 2025 25