Silicon ChipAdvertising Index - July 2025 SILICON CHIP
  1. Outer Front Cover
  2. Contents
  3. Publisher's Letter: Confusion between lithium battery types
  4. Feature: SpaceX by Dr David Maddison
  5. Project: Solar Charging via USB by Julian Edgar
  6. Project: The SmartProbe by Andrew Levido
  7. Feature: Precision Electronics, Part 9 - System Design by Andrew Levido
  8. Subscriptions
  9. Feature: Salvaging Parts by Julian Edgar
  10. Project: Hot Water System Solar Diverter, part two by Ray Berkelmans & John Clarke
  11. Feature: Low-cost electronic modules: 8×16 LED Matrix module by Tim Blythman
  12. Project: SSB Shortwave Receiver, part 2 by Charles Kosina, VK3BAR
  13. Serviceman's Log: Water woes a and hydration hindrances by Dave Thompson
  14. Vintage Radio: Eddystone EC10 Mk2 by Ian Batty
  15. PartShop
  16. Market Centre
  17. Advertising Index
  18. Notes & Errata: Vintage Radio – Emerson 888, May 2025; Power LCR Meter, March & April 2025; Mains Power-Up Sequencer, March & July 2024; Reciprocal Frequency Counter, July 2023
  19. Outer Back Cover

This is only a preview of the July 2025 issue of Silicon Chip.

You can view 37 of the 104 pages in the full issue, including the advertisments.

For full access, purchase the issue for $10.00 or subscribe for access to the latest issues.

Articles in this series:
  • SpaceX (July 2025)
  • SpaceX (July 2025)
Articles in this series:
  • Shed Alarm (March 2025)
  • Audio Mixing Cables (March 2025)
  • Shed Alarm (March 2025)
  • Audio Mixing Cables (March 2025)
  • Solar Charging via USB (July 2025)
  • Solar Charging via USB (July 2025)
Items relevant to "The SmartProbe":
  • SmartProbe PCB [P9054-04] (AUD $5.00)
  • SWD FFC Adaptor PCB [P9045-A] (AUD $2.50)
  • STM32L031F6P6 programmed for the SmartProbe [0411025A.HEX] (Programmed Microcontroller, AUD $15.00)
  • 0.96-inch 128×64-pixel white bare OLED screen (Component, AUD $10.00)
  • SmartProbe firmware (Software, Free)
  • SmartProbe PCB pattern (PDF download) [P9054-04] (Free)
  • SWD Programming Adaptor PCB pattern (PDF download) [P9045-A] (Free)
Articles in this series:
  • Precision Electronics, Part 1 (November 2024)
  • Precision Electronics, Part 1 (November 2024)
  • Precision Electronics, Part 2 (December 2024)
  • Precision Electronics, Part 2 (December 2024)
  • Precision Electronics, Part 3 (January 2025)
  • Precision Electronics, part one (January 2025)
  • Precision Electronics, part one (January 2025)
  • Precision Electronics, Part 3 (January 2025)
  • Precision Electronics, part two (February 2025)
  • Precision Electronics, Part 4 (February 2025)
  • Precision Electronics, Part 4 (February 2025)
  • Precision Electronics, part two (February 2025)
  • Precision Electronics, part three (March 2025)
  • Precision Electronics, part three (March 2025)
  • Precision Electronics, Part 5 (March 2025)
  • Precision Electronics, Part 5 (March 2025)
  • Precision Electronics, Part 6 (April 2025)
  • Precision Electronics, Part 6 (April 2025)
  • Precision Electronics, part four (April 2025)
  • Precision Electronics, part four (April 2025)
  • Precision Electronics, part five (May 2025)
  • Precision Electronics, part five (May 2025)
  • Precision Electronics, Part 7: ADCs (May 2025)
  • Precision Electronics, Part 7: ADCs (May 2025)
  • Precision Electronics, part six (June 2025)
  • Precision Electronics, part six (June 2025)
  • Precision Electronics, Part 8: Voltage References (June 2025)
  • Precision Electronics, Part 8: Voltage References (June 2025)
  • Precision Electronics, Part 9 - System Design (July 2025)
  • Precision Electronics, part seven (July 2025)
  • Precision Electronics, part seven (July 2025)
  • Precision Electronics, Part 9 - System Design (July 2025)
Items relevant to "Hot Water System Solar Diverter, part two":
  • HWS Solar Diverter main PCB [18110241] plus protective panels (AUD $20.00)
  • Hot Water System Solar Diverter software (Free)
  • Hot Water System Solar Diverter PCB pattern (PDF Download) [18110241] (Free)
  • Panel artwork for the Hot Water System Solar Diverter (Free)
Articles in this series:
  • Hot Water System Solar Diverter, part one (June 2025)
  • Hot Water System Solar Diverter, part one (June 2025)
  • Hot Water System Solar Diverter, part two (July 2025)
  • Hot Water System Solar Diverter, part two (July 2025)
Items relevant to "Low-cost electronic modules: 8×16 LED Matrix module":
  • 8x16 LED Matrix software (Free)
Articles in this series:
  • El Cheapo Modules From Asia - Part 1 (October 2016)
  • El Cheapo Modules From Asia - Part 1 (October 2016)
  • El Cheapo Modules From Asia - Part 2 (December 2016)
  • El Cheapo Modules From Asia - Part 2 (December 2016)
  • El Cheapo Modules From Asia - Part 3 (January 2017)
  • El Cheapo Modules From Asia - Part 3 (January 2017)
  • El Cheapo Modules from Asia - Part 4 (February 2017)
  • El Cheapo Modules from Asia - Part 4 (February 2017)
  • El Cheapo Modules, Part 5: LCD module with I²C (March 2017)
  • El Cheapo Modules, Part 5: LCD module with I²C (March 2017)
  • El Cheapo Modules, Part 6: Direct Digital Synthesiser (April 2017)
  • El Cheapo Modules, Part 6: Direct Digital Synthesiser (April 2017)
  • El Cheapo Modules, Part 7: LED Matrix displays (June 2017)
  • El Cheapo Modules, Part 7: LED Matrix displays (June 2017)
  • El Cheapo Modules: Li-ion & LiPo Chargers (August 2017)
  • El Cheapo Modules: Li-ion & LiPo Chargers (August 2017)
  • El Cheapo modules Part 9: AD9850 DDS module (September 2017)
  • El Cheapo modules Part 9: AD9850 DDS module (September 2017)
  • El Cheapo Modules Part 10: GPS receivers (October 2017)
  • El Cheapo Modules Part 10: GPS receivers (October 2017)
  • El Cheapo Modules 11: Pressure/Temperature Sensors (December 2017)
  • El Cheapo Modules 11: Pressure/Temperature Sensors (December 2017)
  • El Cheapo Modules 12: 2.4GHz Wireless Data Modules (January 2018)
  • El Cheapo Modules 12: 2.4GHz Wireless Data Modules (January 2018)
  • El Cheapo Modules 13: sensing motion and moisture (February 2018)
  • El Cheapo Modules 13: sensing motion and moisture (February 2018)
  • El Cheapo Modules 14: Logarithmic RF Detector (March 2018)
  • El Cheapo Modules 14: Logarithmic RF Detector (March 2018)
  • El Cheapo Modules 16: 35-4400MHz frequency generator (May 2018)
  • El Cheapo Modules 16: 35-4400MHz frequency generator (May 2018)
  • El Cheapo Modules 17: 4GHz digital attenuator (June 2018)
  • El Cheapo Modules 17: 4GHz digital attenuator (June 2018)
  • El Cheapo: 500MHz frequency counter and preamp (July 2018)
  • El Cheapo: 500MHz frequency counter and preamp (July 2018)
  • El Cheapo modules Part 19 – Arduino NFC Shield (September 2018)
  • El Cheapo modules Part 19 – Arduino NFC Shield (September 2018)
  • El cheapo modules, part 20: two tiny compass modules (November 2018)
  • El cheapo modules, part 20: two tiny compass modules (November 2018)
  • El cheapo modules, part 21: stamp-sized audio player (December 2018)
  • El cheapo modules, part 21: stamp-sized audio player (December 2018)
  • El Cheapo Modules 22: Stepper Motor Drivers (February 2019)
  • El Cheapo Modules 22: Stepper Motor Drivers (February 2019)
  • El Cheapo Modules 23: Galvanic Skin Response (March 2019)
  • El Cheapo Modules 23: Galvanic Skin Response (March 2019)
  • El Cheapo Modules: Class D amplifier modules (May 2019)
  • El Cheapo Modules: Class D amplifier modules (May 2019)
  • El Cheapo Modules: Long Range (LoRa) Transceivers (June 2019)
  • El Cheapo Modules: Long Range (LoRa) Transceivers (June 2019)
  • El Cheapo Modules: AD584 Precision Voltage References (July 2019)
  • El Cheapo Modules: AD584 Precision Voltage References (July 2019)
  • Three I-O Expanders to give you more control! (November 2019)
  • Three I-O Expanders to give you more control! (November 2019)
  • El Cheapo modules: “Intelligent” 8x8 RGB LED Matrix (January 2020)
  • El Cheapo modules: “Intelligent” 8x8 RGB LED Matrix (January 2020)
  • El Cheapo modules: 8-channel USB Logic Analyser (February 2020)
  • El Cheapo modules: 8-channel USB Logic Analyser (February 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules (May 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules (May 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules, Part 2 (June 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules, Part 2 (June 2020)
  • El Cheapo Modules: Mini Digital Volt/Amp Panel Meters (December 2020)
  • El Cheapo Modules: Mini Digital Volt/Amp Panel Meters (December 2020)
  • El Cheapo Modules: Mini Digital AC Panel Meters (January 2021)
  • El Cheapo Modules: Mini Digital AC Panel Meters (January 2021)
  • El Cheapo Modules: LCR-T4 Digital Multi-Tester (February 2021)
  • El Cheapo Modules: LCR-T4 Digital Multi-Tester (February 2021)
  • El Cheapo Modules: USB-PD chargers (July 2021)
  • El Cheapo Modules: USB-PD chargers (July 2021)
  • El Cheapo Modules: USB-PD Triggers (August 2021)
  • El Cheapo Modules: USB-PD Triggers (August 2021)
  • El Cheapo Modules: 3.8GHz Digital Attenuator (October 2021)
  • El Cheapo Modules: 3.8GHz Digital Attenuator (October 2021)
  • El Cheapo Modules: 6GHz Digital Attenuator (November 2021)
  • El Cheapo Modules: 6GHz Digital Attenuator (November 2021)
  • El Cheapo Modules: 35MHz-4.4GHz Signal Generator (December 2021)
  • El Cheapo Modules: 35MHz-4.4GHz Signal Generator (December 2021)
  • El Cheapo Modules: LTDZ Spectrum Analyser (January 2022)
  • El Cheapo Modules: LTDZ Spectrum Analyser (January 2022)
  • Low-noise HF-UHF Amplifiers (February 2022)
  • Low-noise HF-UHF Amplifiers (February 2022)
  • A Gesture Recognition Module (March 2022)
  • A Gesture Recognition Module (March 2022)
  • Air Quality Sensors (May 2022)
  • Air Quality Sensors (May 2022)
  • MOS Air Quality Sensors (June 2022)
  • MOS Air Quality Sensors (June 2022)
  • PAS CO2 Air Quality Sensor (July 2022)
  • PAS CO2 Air Quality Sensor (July 2022)
  • Particulate Matter (PM) Sensors (November 2022)
  • Particulate Matter (PM) Sensors (November 2022)
  • Heart Rate Sensor Module (February 2023)
  • Heart Rate Sensor Module (February 2023)
  • UVM-30A UV Light Sensor (May 2023)
  • UVM-30A UV Light Sensor (May 2023)
  • VL6180X Rangefinding Module (July 2023)
  • VL6180X Rangefinding Module (July 2023)
  • pH Meter Module (September 2023)
  • pH Meter Module (September 2023)
  • 1.3in Monochrome OLED Display (October 2023)
  • 1.3in Monochrome OLED Display (October 2023)
  • 16-bit precision 4-input ADC (November 2023)
  • 16-bit precision 4-input ADC (November 2023)
  • 1-24V USB Power Supply (October 2024)
  • 1-24V USB Power Supply (October 2024)
  • 14-segment, 4-digit LED Display Modules (November 2024)
  • 14-segment, 4-digit LED Display Modules (November 2024)
  • 0.91-inch OLED Screen (November 2024)
  • 0.91-inch OLED Screen (November 2024)
  • The Quason VL6180X laser rangefinder module (January 2025)
  • The Quason VL6180X laser rangefinder module (January 2025)
  • TCS230 Colour Sensor (January 2025)
  • TCS230 Colour Sensor (January 2025)
  • Using Electronic Modules: 1-24V Adjustable USB Power Supply (February 2025)
  • Using Electronic Modules: 1-24V Adjustable USB Power Supply (February 2025)
  • Low-cost electronic modules: 8×16 LED Matrix module (July 2025)
  • Low-cost electronic modules: 8×16 LED Matrix module (July 2025)
Items relevant to "SSB Shortwave Receiver, part 2":
  • SSB Shortwave Receiver PCB set [CSE250202-3] (AUD $15.00)
  • SI5351A clock generator module (Component, AUD $7.50)
  • Micrometals Amidon T50-6 toroidal core (Component, AUD $5.00)
  • SMD transistor - BF998 12V 30mA dual-gate depletion-mode Mosfet (SOT-143) (Component, AUD $2.50)
  • 16x2 Alphanumeric module with blue backlight (Component, AUD $10.00)
  • SSB Shortwave Receiver front panel [CSE250204] (PCB, AUD $7.50)
  • SSB Shortwave Receiver firmware (CSE25020A) (Software, Free)
  • SSB Shortwave Receiver PCB patterns (PDF download) [CSE250202-3] (Free)
Articles in this series:
  • SSB Shortwave Receiver, part 1 (June 2025)
  • SSB Shortwave Receiver, part 1 (June 2025)
  • SSB Shortwave Receiver, part 2 (July 2025)
  • SSB Shortwave Receiver, part 2 (July 2025)

Purchase a printed copy of this issue for $13.00.

Advertising Index Altronics.................................29-32 Blackmagic Design....................... 7 Dave Thompson........................ 103 DigiKey Electronics....................... 3 Emona Instruments.................. IBC Hare & Forbes............................. 11 Jaycar.................. IFC, 12-13, 44-45 Keith Rippon Kit Assembly....... 103 Lazer Security........................... 103 LD Electronics........................... 103 LEDsales................................... 103 Microchip Technology.............OBC Mouser Electronics....................... 4 OurPCB Australia.......................... 5 PCBWay......................................... 9 PMD Way................................... 103 SC Micromite Explore 40............ 56 SC Mains Sequencer................ 103 Silicon Chip Shop.................97-99 Silicon Chip Songbird................ 52 Silicon Chip Subscriptions........ 53 The Loudspeaker Kit.com.......... 10 Wagner Electronics..................... 85 YUKI KP-480 machine.............. 103 we don’t think that is possible unless the clock provided by the master is quite slow. For example, we used a Raspberry Pi Pico running at 133MHz+ to create an I2C monitor device to capture the output of an I2C OLED, to emulate its display. Even then, the I2C master needed to be slowed substantially to capture the data successfully. The immediate output behaviour is normal since the Interface Board delivers the data as soon as it is received. Something like the Arduino IDE’s serial monitor will only send data when the line ending is entered, so that is an option if you want such behaviour. Protection diodes on amplifier outputs Regarding Electronic Australia’s Playmaster and Silicon Chip’s audio amplifiers, I am curious why there are no back-EMF protective diodes connected between the emitters and collectors on the output transistors. They are used with many commercial amplifiers, including Naim, Denon etc. I have assembled many EA and Silicon Chip amplifiers over many years for friends and myself. (D. B., via email) ● We have included such diodes in most of our amplifiers since November 2012, when they were used in the Classic-D amplifier (siliconchip. au/Series/17). Since then, they can be seen in the Ultra-LD Mk.4 amplifier from August 2015 (siliconchip. au/Series/289), the SC200 in January Errata and on-sale data for the next issue 2017 (siliconchip.au/Series/308) and the 500W Amplifier from April 2022 (siliconchip.au/Series/380). These diodes are necessary when the amplifier is used to drive a transformer, as used for 70V and 100V line connected loudspeakers. The diodes are not strictly required while the amplifier is operating within its linear range, where the negative feedback has control of the amplifier output. Only when the amplifier is in clipping, where the output operation is beyond the limits of feedback control, will the protection diodes come into effect and clamp any back-EMF. This only occurs when the amplifier is used with a significantly inductive load. Our earlier amplifiers without the protection diodes were long-lasting and reliable. Including these diodes in later designs is part of the evolution of semiconductor power amplifiers, beginning in the Electronics Australia days in the 1960s. With continued improvements over the decades, our amplifiers have become some of the best performers ever published, rivalling the best commercial amplifiers. Generally, including these diodes doesn’t seem to hurt and they may be beneficial in some circumstances. Earlier amplifiers would have omitted them due to their cost, but these days suitable diodes will not break the bank, so we might as well specify them. DIY inverters are no longer worthwhile Next Issue: the August 2025 issue is due on sale in newsagents by Monday, July 28th. Expect postal delivery of subscription copies in Australia between July 25th and August 15th. I saw advertisements in two old issues of Silicon Chip for 24V DC to 240V AC inverter kits from Altronics. I also found an old Rod Irving kit for a 2kW 24V DC to 240V AC inverter from 1992-1993. Are there more recent projects for inverter kits? (R. S., Chifley, NSW) ● While it may have been worthwhile to build your own inverter back in the early 1990s, today it definitely isn’t. Basic commercial inverters can be found under $30. A 150W inverter will cost you around $50, while $99 will get you a 400-500W inverter. You can get a 2kW inverter for under $200 from many sources. Anything we design would cost more than that in just parts, and you SC would still have to build it. Australia's electronics magazine siliconchip.com.au Vintage Radio – Emerson 888, May 2025: there are two mistakes in the redrawn circuit diagram (Fig.1). R6 is shown connected to the wrong end of T2’s secondary; it should connect to the lower side that goes to the base of TR2. Separately, the junction of C10 & R10 should connect to the base of TR3 (the bottom end of T3’s secondary), rather than the top of T3’s secondary. Power LCR Meter, March & April 2025: in Fig.8 on p36 of the March issue, the SI and SCK pins of IC5 are numbered incorrectly. SI is pin 6 and SCK is pin 5. Mains Power-Up Sequencer, February, March & July 2024: if using the Mains Detect Input feature, the 10μF electrolytic capacitor next to pin 4 of IC10 should be installed, even though it is in the Current Detection section. This prevents false triggering due to EMI pickup. Reciprocal Frequency Counter, July 2023: the lowest frequency the Counter can measure is 2Hz, not 10mHz. Also, below 10Hz, its readings may not be very accurate. 104 Silicon Chip