Silicon ChipThe Fox Report - March 2020 SILICON CHIP
  1. Outer Front Cover
  2. Contents
  3. Subscriptions: PE Subscription
  4. Publisher's Letter
  5. Feature: The Fox Report
  6. Feature: Techno Talk by Mark Nelson
  7. Feature: Net Work by Alan Winstanley
  8. Project: Diode Curve Plotter by Tim Blythman
  9. Project: Audio DSP by Design by Phil Prosser, Words Nicholas Vinen
  10. Project: Steam Train Whistle ... or Diesel Horn by JOHN CLARKE
  11. Project: Galvanic Skin Response by Jim Rowe
  12. Feature: PIC n’ Mix by Mike Hibbett
  13. Feature: Circuit Surgery by Ian Bell
  14. Feature: AUDIO OUT
  15. Feature: Make it with Micromite by Phil Boyce
  16. Feature: Visual programming with XOD by Julian Edgar
  17. Feature: Max’s Cool Beans by Max the Magnificent
  18. Feature: Electronic Building Blocks by Julian Edgar
  19. PCB Order Form
  20. Advertising Index

This is only a preview of the March 2020 issue of Practical Electronics.

You can view 0 of the 80 pages in the full issue.

Articles in this series:
  • Techno Talk (February 2020)
  • Techno Talk (February 2020)
  • Techno Talk (March 2020)
  • Techno Talk (March 2020)
  • (April 2020)
  • (April 2020)
  • Techno Talk (May 2020)
  • Techno Talk (May 2020)
  • Techno Talk (June 2020)
  • Techno Talk (June 2020)
  • Techno Talk (July 2020)
  • Techno Talk (July 2020)
  • Techno Talk (August 2020)
  • Techno Talk (August 2020)
  • Techno Talk (September 2020)
  • Techno Talk (September 2020)
  • Techno Talk (October 2020)
  • Techno Talk (October 2020)
  • (November 2020)
  • (November 2020)
  • Techno Talk (December 2020)
  • Techno Talk (December 2020)
  • Techno Talk (January 2021)
  • Techno Talk (January 2021)
  • Techno Talk (February 2021)
  • Techno Talk (February 2021)
  • Techno Talk (March 2021)
  • Techno Talk (March 2021)
  • Techno Talk (April 2021)
  • Techno Talk (April 2021)
  • Techno Talk (May 2021)
  • Techno Talk (May 2021)
  • Techno Talk (June 2021)
  • Techno Talk (June 2021)
  • Techno Talk (July 2021)
  • Techno Talk (July 2021)
  • Techno Talk (August 2021)
  • Techno Talk (August 2021)
  • Techno Talk (September 2021)
  • Techno Talk (September 2021)
  • Techno Talk (October 2021)
  • Techno Talk (October 2021)
  • Techno Talk (November 2021)
  • Techno Talk (November 2021)
  • Techno Talk (December 2021)
  • Techno Talk (December 2021)
  • Communing with nature (January 2022)
  • Communing with nature (January 2022)
  • Should we be worried? (February 2022)
  • Should we be worried? (February 2022)
  • How resilient is your lifeline? (March 2022)
  • How resilient is your lifeline? (March 2022)
  • Go eco, get ethical! (April 2022)
  • Go eco, get ethical! (April 2022)
  • From nano to bio (May 2022)
  • From nano to bio (May 2022)
  • Positivity follows the gloom (June 2022)
  • Positivity follows the gloom (June 2022)
  • Mixed menu (July 2022)
  • Mixed menu (July 2022)
  • Time for a total rethink? (August 2022)
  • Time for a total rethink? (August 2022)
  • What’s in a name? (September 2022)
  • What’s in a name? (September 2022)
  • Forget leaves on the line! (October 2022)
  • Forget leaves on the line! (October 2022)
  • Giant Boost for Batteries (December 2022)
  • Giant Boost for Batteries (December 2022)
  • Raudive Voices Revisited (January 2023)
  • Raudive Voices Revisited (January 2023)
  • A thousand words (February 2023)
  • A thousand words (February 2023)
  • It’s handover time (March 2023)
  • It’s handover time (March 2023)
  • AI, Robots, Horticulture and Agriculture (April 2023)
  • AI, Robots, Horticulture and Agriculture (April 2023)
  • Prophecy can be perplexing (May 2023)
  • Prophecy can be perplexing (May 2023)
  • Technology comes in different shapes and sizes (June 2023)
  • Technology comes in different shapes and sizes (June 2023)
  • AI and robots – what could possibly go wrong? (July 2023)
  • AI and robots – what could possibly go wrong? (July 2023)
  • How long until we’re all out of work? (August 2023)
  • How long until we’re all out of work? (August 2023)
  • We both have truths, are mine the same as yours? (September 2023)
  • We both have truths, are mine the same as yours? (September 2023)
  • Holy Spheres, Batman! (October 2023)
  • Holy Spheres, Batman! (October 2023)
  • Where’s my pneumatic car? (November 2023)
  • Where’s my pneumatic car? (November 2023)
  • Good grief! (December 2023)
  • Good grief! (December 2023)
  • Cheeky chiplets (January 2024)
  • Cheeky chiplets (January 2024)
  • Cheeky chiplets (February 2024)
  • Cheeky chiplets (February 2024)
  • The Wibbly-Wobbly World of Quantum (March 2024)
  • The Wibbly-Wobbly World of Quantum (March 2024)
  • Techno Talk - Wait! What? Really? (April 2024)
  • Techno Talk - Wait! What? Really? (April 2024)
  • Techno Talk - One step closer to a dystopian abyss? (May 2024)
  • Techno Talk - One step closer to a dystopian abyss? (May 2024)
  • Techno Talk - Program that! (June 2024)
  • Techno Talk - Program that! (June 2024)
  • Techno Talk (July 2024)
  • Techno Talk (July 2024)
  • Techno Talk - That makes so much sense! (August 2024)
  • Techno Talk - That makes so much sense! (August 2024)
  • Techno Talk - I don’t want to be a Norbert... (September 2024)
  • Techno Talk - I don’t want to be a Norbert... (September 2024)
  • Techno Talk - Sticking the landing (October 2024)
  • Techno Talk - Sticking the landing (October 2024)
  • Techno Talk (November 2024)
  • Techno Talk (November 2024)
  • Techno Talk (December 2024)
  • Techno Talk (December 2024)
  • Techno Talk (January 2025)
  • Techno Talk (January 2025)
  • Techno Talk (February 2025)
  • Techno Talk (February 2025)
  • Techno Talk (March 2025)
  • Techno Talk (March 2025)
  • Techno Talk (April 2025)
  • Techno Talk (April 2025)
  • Techno Talk (May 2025)
  • Techno Talk (May 2025)
  • Techno Talk (June 2025)
  • Techno Talk (June 2025)
  • Techno Talk (July 2025)
  • Techno Talk (July 2025)
The Fox Report Barry Fox’s technology column Easy when you know how, or have a decent user manual! I nstruction manuals got a bad name when early home computers were sold with thick volumes of gibberish that only made sense when you already knew what the instructions were trying to say. The pendulum has now swung to the other extreme; manuals so simplistic that they are largely useless, accompanied by a thick bundle of even more useless legal health and safety warnings. Two recent examples exemplify the pitfalls. Wasting time I recently embarked on a project to replace the movements in several wall clocks with radio-controlled equivalents – and so ensure that clocks around the house were not an hour out for half the year. All the movements came with no instructions and none of them moved the hands when fitted with new 1.5V cells. The vendor, based in Britain, was obviously working from allpurpose scripted fob-off replies like, ‘take them to the nearest repair shop’. I guess he has by now had to refund a lot of customers. Pin What I discovered by trial and error could have been simply written: ‘There is a small, un-marked and inconspicuous locking pin in the casing which must be removed before a Shown here, one of many attempts to reset the clock. All battery is inserted. Then failed until I removed the locking pin – the little silver object next to the ‘quartz’ label. I found it by chance when I opened wait for the bare spinthe body to look for a non-existent fault, and the pin fell out. dles to turn quite fast and stop at a zero point. Next, before the spindles start to turn again, very carefully push-fit the hour, minute and second hands, all pointing to 12, without moving the spindles. Then leave the movement untouched to self-adjust to the NPL (National Physical Laboratory) 60kHz atomic clock signal broadcast from Anthorn in Cumbria. Note that to receive an adequate radio signal you may have to try several places in the room, near windows. And maybe leave it overnight. Do not try to move the hands after they have been fitted to the spindles. If you make a mistake and inadvertently move the hands, do it all over again.’ Not much to ask for is it? And I offer the above (without guarantee!) to help any readers who are contemplating a similar exercise. Sounds easy, but… The native sound from flat-screen TVs and small PCs is usually very poor, so sales of sound bars and docks are booming. Unfortunately, the instructions are often well-nigh useless. They fail to tell users clearly what the devices can do, and how to get them to do it. And many users, who are accustomed to just watching TV, need to be told. Extruded enclosures standard and heatsink www.hammondmfg.com/1455.htm www.hammondmfg.com/1455NHD.htm 01256 812812 sales<at>hammond-electronics.co.uk 8 Practical Electronics | March | 2020 I recently tested an A70 sound bar and E30 audio dock made by British company Orbitsound. The designs are British, the prices reasonable and neither follows the unappealing trend of trying to trick up the sound with pseudo surround and Atmos height. After time-consuming correspondence with Orbitsound’s help line (my time and theirs) the company now acknowledges the need for better user manuals. Here are a few essential basics that really should be clearly set out in all user guides by all manufacturers. The dock/bar connects either with a 3.5mm Aux analogue jack cable or digital optical SP/DIF cable to a TV or PC. Usually plugging the Aux jack into a TV/PC will mute its own speakers. Controlling volume and muting on the TV/PC will then control volume and muting from the dock/bar. But, to avoid hiss, hum and digital ticking noise, set the dock/bar volume at whatever level lets the TV/PC send out an average meaty level of around 80%. Connecting by digital optical cable should give better sound, but the volume level coming from the dock/bar is fixed so sound volume must be controlled by the dock/bar and its own remote. Teach your system In Search of Simulacra: This is why a ‘learn’ option (as Modeling a Self-Learning Android offered by Orbitsound and bars made by German company Canton) is useful. The bar/dock can be ‘taught’ to respond to volume and mute control commands from the TV’s own remote. The TV speakers can be turned off and the TV remote controls the dock/bar volume. Sometimes – as happened to me with the Orbitsound bar – the Photo: interloveupted.blogspo.com Simulacra: an automated robot mentioned in Homer’s Illiad – 700 to 800 BC dock/bar may stubbornly refuse to The reader is taken through basic understanding learn commands because the TV of human nature, thinking, learning, problem remote uses too-complex coding. solving. Then Conceptual information about Fortunately there is a workaround basic control systems through to Artificial Neural Networks and software architectures is that sometimes works. Use the presented. All in plain language. The book goes troublesome remote to teach anon to explain the details of how a self-learning other remote with learning facilAndroid could work by putting together those ity, and then use that remote to previously described control systems. teach the bar/dock. Available on Amazon.UK The bar/dock may also be able Written in plain language, for anyone interested to connect with a TV/PC by Bluein the next step in Artificial Intelligence tooth. But the Bluetooth signal www.amazon.co.uk/dp/1513653075 processing will add some delay to standard SBC A2DP (Sub Band Codec, the audio. This ‘latency’ may be enough Advanced Audio Distribution Profile). to destroy lip sync with a TV screen. The proprietary aptX coding system Barry Fox, FBKS (Fellow, – if supported – will generally have International Moving Image Society) lower latency than the basic Bluetooth STEWART OF READING 17A King Street, Mortimer, near Reading, RG7 3RS Telephone: 0118 933 1111 Fax: 0118 933 2375 USED ELECTRONIC TEST EQUIPMENT Check website www.stewart-of-reading.co.uk Fluke/Philips PM3092 Oscilloscope 2+2 Channel 200MHz Delay TB, Autoset etc – £250 LAMBDA GENESYS LAMBDA GENESYS IFR 2025 IFR 2948B IFR 6843 R&S APN62 Agilent 8712ET HP8903A/B HP8757D HP3325A HP3561A HP6032A HP6622A HP6624A HP6632B HP6644A HP6654A HP8341A HP83630A HP83624A HP8484A HP8560E HP8563A HP8566B HP8662A Marconi 2022E Marconi 2024 Marconi 2030 Marconi 2023A PSU GEN100-15 100V 15A Boxed As New £400 PSU GEN50-30 50V 30A £400 Signal Generator 9kHz – 2.51GHz Opt 04/11 £900 Communication Service Monitor Opts 03/25 Avionics POA Microwave Systems Analyser 10MHz – 20GHz POA Syn Function Generator 1Hz – 260kHz £295 RF Network Analyser 300kHz – 1300MHz POA Audio Analyser £750 – £950 Scaler Network Analyser POA Synthesised Function Generator £195 Dynamic Signal Analyser £650 PSU 0-60V 0-50A 1000W £750 PSU 0-20V 4A Twice or 0-50V 2A Twice £350 PSU 4 Outputs £400 PSU 0-20V 0-5A £195 PSU 0-60V 3.5A £400 PSU 0-60V 0-9A £500 Synthesised Sweep Generator 10MHz – 20GHz £2,000 Synthesised Sweeper 10MHz – 26.5 GHz POA Synthesised Sweeper 2 – 20GHz POA Power Sensor 0.01-18GHz 3nW-10µW £75 Spectrum Analyser Synthesised 30Hz – 2.9GHz £1,750 Spectrum Analyser Synthesised 9kHz – 22GHz £2,250 Spectrum Analsyer 100Hz – 22GHz £1,200 RF Generator 10kHz – 1280MHz £750 Synthesised AM/FM Signal Generator 10kHz – 1.01GHz £325 Synthesised Signal Generator 9kHz – 2.4GHz £800 Synthesised Signal Generator 10kHz – 1.35GHz £750 Signal Generator 9kHz – 1.2GHz £700 HP/Agilent HP 34401A Digital Multimeter 6½ Digit £325 – £375 HP 54600B Oscilloscope Analogue/Digital Dual Trace 100MHz Only £75, with accessories £125 (ALL PRICES PLUS CARRIAGE & VAT) Please check availability before ordering or calling in HP33120A HP53131A HP53131A Audio Precision Datron 4708 Druck DPI 515 Datron 1081 ENI 325LA Keithley 228 Time 9818 Practical Electronics | March | 2020 Marconi 2305 Modulation Meter £250 Marconi 2440 Counter 20GHz £295 Marconi 2945/A/B Communications Test Set Various Options POA Marconi 2955 Radio Communications Test Set £595 Marconi 2955A Radio Communications Test Set £725 Marconi 2955B Radio Communications Test Set £800 Marconi 6200 Microwave Test Set £1,500 Marconi 6200A Microwave Test Set 10MHz – 20GHz £1,950 Marconi 6200B Microwave Test Set £2,300 Marconi 6960B Power Meter with 6910 sensor £295 Tektronix TDS3052B Oscilloscope 500MHz 2.5GS/s £1,250 Tektronix TDS3032 Oscilloscope 300MHz 2.5GS/s £995 Tektronix TDS3012 Oscilloscope 2 Channel 100MHz 1.25GS/s £450 Tektronix 2430A Oscilloscope Dual Trace 150MHz 100MS/s £350 Tektronix 2465B Oscilloscope 4 Channel 400MHz £600 Farnell AP60/50 PSU 0-60V 0-50A 1kW Switch Mode £300 Farnell XA35/2T PSU 0-35V 0-2A Twice Digital £75 Farnell AP100-90 Power Supply 100V 90A £900 Farnell LF1 Sine/Sq Oscillator 10Hz – 1MHz £45 Racal 1991 Counter/Timer 160MHz 9 Digit £150 Racal 2101 Counter 20GHz LED £295 Racal 9300 True RMS Millivoltmeter 5Hz – 20MHz etc £45 Racal 9300B As 9300 £75 Solartron 7150/PLUS 6½ Digit DMM True RMS IEEE £65/£75 Solatron 1253 Gain Phase Analyser 1mHz – 20kHz £600 Solartron SI 1255 HF Frequency Response Analyser POA Tasakago TM035-2 PSU 0-35V 0-2A 2 Meters £30 Thurlby PL320QMD PSU 0-30V 0-2A Twice £160 – £200 Thurlby TG210 Function Generator 0.002-2MHz TTL etc Kenwood Badged £ 6 5 Function Generator 100 microHz – 15MHz Universal Counter 3GHz Boxed unused Universal Counter 225MHz SYS2712 Audio Analyser – in original box Autocal Multifunction Standard Pressure Calibrator/Controller Autocal Standards Multimeter RF Power Amplifier 250kHz – 150MHz 25W 50dB Voltage/Current Source DC Current & Voltage Calibrator £350 £600 £350 POA POA £400 POA POA POA POA Marconi 2955B Radio Communications Test Set – £800 9