Silicon ChipWhite LED Driver - March 2004 SILICON CHIP
  1. Outer Front Cover
  2. Contents
  3. Publisher's Letter: We launch Silicon Chip On-Line
  4. Feature: Hawk-Eye: The Coming Revolution In Sport? by Ross Tester
  5. Project: QuickBrake: For Increased Driving Safety by Julian Edgar and John Clarke
  6. Feature: Transferring PC Data? – Put It On The Bus! by Ross Tester
  7. Project: 3V To 9V DC-DC Converter by Peter Smith
  8. Project: The ESR Meter Mk.2 by Bob Parker
  9. Feature: Hands-On PC Board Design For Beginners; Pt.2 by Peter Smith
  10. Project: Power Supply Demo Design by Peter Smith
  11. Project: White LED Driver by Stephen David
  12. Review: Escort 3146A Bench Top Multimeter by Peter Smith
  13. Project: PICAXE-18X 4-Channel Datalogger; Pt.3 by Clive Seager
  14. Vintage Radio: The little 1934 Astor Mickey by Rodney Champness
  15. Advertising Index
  16. Book Store
  17. Outer Back Cover

This is only a preview of the March 2004 issue of Silicon Chip.

You can view 20 of the 96 pages in the full issue, including the advertisments.

For full access, purchase the issue for $10.00 or subscribe for access to the latest issues.

Items relevant to "QuickBrake: For Increased Driving Safety":
  • QuickBrake PCB pattern (PDF download) [05103041] (Free)
Items relevant to "3V To 9V DC-DC Converter":
  • 3V to 9V DC-DC Converter PCB pattern (PDF download) [11103041] (Free)
Articles in this series:
  • The ESR Meter Mk.2 (March 2004)
  • The ESR Meter Mk.2 (March 2004)
  • The ESR Meter Mk.2; Pt.2 (April 2004)
  • The ESR Meter Mk.2; Pt.2 (April 2004)
Articles in this series:
  • Hands-On PC Board Design For Beginners; Pt.1 (February 2004)
  • Hands-On PC Board Design For Beginners; Pt.1 (February 2004)
  • Hands-On PC Board Design For Beginners; Pt.2 (March 2004)
  • Hands-On PC Board Design For Beginners; Pt.2 (March 2004)
  • Hands-On PC Board Design For Beginners; Pt.3 (April 2004)
  • Hands-On PC Board Design For Beginners; Pt.3 (April 2004)
Items relevant to "Power Supply Demo Design":
  • Power Supply Demo Design PCB pattern (PDF download) [04103041] (Free)
Items relevant to "PICAXE-18X 4-Channel Datalogger; Pt.3":
  • PICAXE-18X BASIC source code for the 4-Channel Datalogger with Humidity Sensor (Software, Free)
Articles in this series:
  • PICAXE-18X 4-Channel Datalogger (January 2004)
  • PICAXE-18X 4-Channel Datalogger (January 2004)
  • PICAXE-18X 4-Channel Datalogger; Pt.2 (February 2004)
  • PICAXE-18X 4-Channel Datalogger; Pt.2 (February 2004)
  • PICAXE-18X 4-Channel Datalogger; Pt.3 (March 2004)
  • PICAXE-18X 4-Channel Datalogger; Pt.3 (March 2004)

Purchase a printed copy of this issue for $10.00.

LED Driver This white LED driver will drive 30 white LEDs in six groups of five from a 12V source such as an SLA or car battery. It can be switched on and off manually or it can switch on automatically when darkness falls. By STEPHEN DAVID W HILE WE HAVE now published quite a few LED driver circuits, to date we have not published a design to drive a bunch of high-brightness white LEDs. Such a circuit is now quite desirable as the price of white LEDs has fallen and you can have a handful for not a lot of dollars. However, white LEDs do present a problem because they need a higher drive voltage than monochromatic types such as red, green, orange etc. Instead of around 1.8V to 2V or thereabouts, they normally require more than 3V to produce their rated brightness. In fact, if you are driving a bunch of them you need to drive them all at constant current otherwise their individual brightness tends to vary markedly. However, if you only have a 12V supply available, you can only put two or maybe three LEDs in series together with a constant current source and this leads to poor efficiency. Where To Buy A Kit This kit has been designed by Oatley Electronics who own the copyright. The kit comes in two parts: (1) K202 which includes the PC board, the driver circuitry, 10 high brightness white LEDs and two current source transistors; and (2) K202A which provides 10 high brightness white LEDs and two current source transistors, so with K202 and two K202A kits you get the full complement of 30 white LEDs. Pricing is $17 (including GST) for K202 and $8 for K202A. The optional swivel mounting bracket is $1.00 while postage and packing is $6 within Australia. Kits may be obtained direct from Oatley Electronics, PO Box 89, Oatley NSW 2223. Phone (02) 9584 3563; Fax (02) 9584 3561. Website: www.oatleye.com www.siliconchip.com.au The approach in this circuit is to boost the 12V supply to something around 21V and this means that we can have groups of five LEDs, each in series with their own current source transistors. The result is a single PC board with the drive circuitry and 30 white LEDs. It can be used for lighting in caravans and recreational vehicles, emergency lighting or whatever application you can think of. Current drain is around 190mA at 12V. Circuit description Now let’s have a look at the circuit of Fig.1. It uses just one IC (a 4093 quad NAND Schmitt trigger gate package), a few transistors and diodes, 30 white LEDs and not much else. So where is the familiar boost converter circuit? Answer: there isn’t one or least not one with an inductor switched by a Mosfet. Instead, there is a charge pump inverter, comprising IC1c, transistors Q2 & Q3, Schottky diodes D1 & D2 and a few capacitors. It works as follows: IC1c is connected as an inverter oscillator and its running frequency March 2004  73 Fig.1: the boost circuit involving oscillator IC1c and transistors Q2 & Q3 drives a diode pump (D1 & D2) to step up the DC to around 21V. 74  Silicon Chip of about 30kHz is determined mainly by the 6.8kΩ resistor between pins 8 & 10 together with the 4.7nF capacitor at pin 8. This produces a rectangular waveform (not quite square but pretty close) at pin 10 to drive complementary switching transistors Q2 & Q3. The waveform at their commoned emitters drives a diode pump consisting of two 100µF capacitors and Schottky diodes D1 & D2. The waveform generated by the circuit can be seen in the scope photo of Fig.2. RS flipflop Oscillator IC1c is controlled by an RS (Reset/Set) flipflop comprising the two NAND gates IC1a & IC1b and this is controlled by pushbutton switches S1 and S2. Normally, this has its pin 4 low and pins 1 & 6 are pulled high via 470kΩ resistors. Momentarily closing S1 (ON) pulls pin 6 low, causing the flipflop to change state so that pin 4 now goes high to enable IC1c which now oscillates at 30kHz. The 30kHz waveform produced by transistors Q2 & Q3 drives the diode pump referred to earlier and this develops about 21V to drive the LED columns. Each column of five white LEDs is driven by its own current source transistor which has a 33Ω emitter resistor. The bases of all six current source transistors (Q4-Q9) are driven from pin 4 of IC1b via a 6.8kΩ resistor and clamped to a maximum of +1.2V by diodes D3 & D4. Subtract the 0.6V between the base and emitter of each transistor and you are left with 0.6V across each 33Ω resistor, thus setting the LED drive current to 18mA. Switching the circuit off is accomplished by pushing the OFF switch, S2. This momentarily pulls pin 1 low to toggle the RS flipflop, thus causing pin 4 to go low. This disables IC1c, Q2 & Q3 and also turns off the current source transistors. Note that there is an interesting wrinkle to this drive circuit, because there is no On/Off switch. This means that the current source transistors must be turned off otherwise they would continue to draw current from the 12V supply even when the circuit is nominally off. The current path may not be obvious but it is via the boost circuit’s diodes, D1 & D2. Auto on/off As well as using the pushbutton www.siliconchip.com.au The optional swivel-mount unit is fitted directly to the bottom of the PC board and allows the “LED Lamp” to be adjusted to a convenient angle. Fig.2: this scope shot shows the waveform at the commoned emitters of transistors Q2 & Q3. Fig.3: the component overlay for the PC board. Sections can be snapped off to provide “lamps” at separate locations. switches S1 & S2 to turn the circuit on and off, there is also a facility to automatically turn the circuit on and off depending on ambient light levels. Links L1 & L2 can be used to provide Auto On and Auto Off respectively and these features can be used separately or together. An LDR (light dependent resistor) is used to monitor the ambient light level. When light falls upon it, it pulls the base of Q1 low, causing pins 12 & 11 of IC1d to go low and its pin 11 to go high. When darkness falls (or the room lights go out), the process is reversed. Depending on whether you have one or both links connected, you can use www.siliconchip.com.au the pushbuttons to turn the circuit on and off and have it turn on and/off automatically as well. Q1 also drives a red high brightness LED (LED1) at very low current, via a 470kΩ resistor. This is a bit of a gimmick but it does have the benefit of showing that this part of the circuit is working, if you have to troubleshoot it. Board options As presented, the PC board is 130 x 47mm and it has three snap-off sections, each carrying 10 LEDs and two drive transistors. This gives you the option of having all 30 LEDs on the board or having three separate LED “lamps” spread around your tent, caravan, boat, yurt or whatever. You would need three wires to interconnect each board section, if you take that option. The full board component overlay is shown in Fig.3 and it shows a full complement of 30 LEDs (plus red LED1). No special order of assembly is necessary but take care to insert all the polarised components correctly. Note the little flat on one side of the LEDs; this needs to match the screen-printed overlay on the PC board. Make sure you connect the supply wires correctly. Reversing them will almost certainly cause component SC damage. March 2004  75