Silicon ChipThe hydraulic analogy is valuable for beginners - November 2024 SILICON CHIP
  1. Outer Front Cover
  2. Contents
  3. Publisher's Letter: The hydraulic analogy is valuable for beginners
  4. Feature: Nikola Tesla, Part 2 by Dr David Maddison
  5. Project: Variable Speed Drive Mk2, Part 1 by Andrew Levido
  6. Subscriptions
  7. Feature: Precision Electronics, Part 1 by Andrew Levido
  8. Project: Surf Sound Simulator by John Clarke
  9. Project: JMP014 - Analog pace clock & stopwatch by Tim Blythman
  10. Project: JMP013 - Digital spirit level by Tim Blythman
  11. Project: FlexiDice by Tim Blythman
  12. Feature: 0.91-inch OLED Screen by Jim Rowe
  13. Project: 3D Printer Filament Dryer, Part 2 by Phil Prosser
  14. Feature: Maxwell’s Equations by Brandon Speedie
  15. PartShop
  16. Serviceman's Log: The Show Must Go On by Dave Thompson
  17. Vintage Radio: Revisting the Zenith Royal 500 by Ian Batty
  18. Market Centre
  19. Advertising Index
  20. Notes & Errata: PicoMSA, September 2024
  21. Outer Back Cover

This is only a preview of the November 2024 issue of Silicon Chip.

You can view 46 of the 112 pages in the full issue, including the advertisments.

For full access, purchase the issue for $10.00 or subscribe for access to the latest issues.

Articles in this series:
  • The life of Nikola Tesla, Part 1 (October 2024)
  • The life of Nikola Tesla, Part 1 (October 2024)
  • Nikola Tesla, Part 2 (November 2024)
  • Nikola Tesla, Part 2 (November 2024)
Items relevant to "Variable Speed Drive Mk2, Part 1":
  • Mk2 VSD PCB [11111241 or 9048-02] (AUD $15.00)
  • STM32G030K6T6 programmed for the VSD Mk2 [1111124A] (Programmed Microcontroller, AUD $10.00)
  • Firmware for the VSD Mk2 (Software, Free)
  • VSD Mk2 PCB pattern (PDF download) [11111241] (Free)
  • Mk2 VSD drilling & cutting diagrams (Panel Artwork, Free)
Articles in this series:
  • Variable Speed Drive Mk2, Part 1 (November 2024)
  • Variable Speed Drive Mk2, Part 1 (November 2024)
  • Variable Speed Drive Mk2, Part 2 (December 2024)
  • Variable Speed Drive Mk2, Part 2 (December 2024)
Articles in this series:
  • Precision Electronics, Part 1 (November 2024)
  • Precision Electronics, Part 1 (November 2024)
  • Precision Electronics, Part 2 (December 2024)
  • Precision Electronics, Part 2 (December 2024)
  • Precision Electronics, Part 3 (January 2025)
  • Precision Electronics, part one (January 2025)
  • Precision Electronics, part one (January 2025)
  • Precision Electronics, Part 3 (January 2025)
  • Precision Electronics, part two (February 2025)
  • Precision Electronics, Part 4 (February 2025)
  • Precision Electronics, Part 4 (February 2025)
  • Precision Electronics, part two (February 2025)
  • Precision Electronics, part three (March 2025)
  • Precision Electronics, part three (March 2025)
  • Precision Electronics, Part 5 (March 2025)
  • Precision Electronics, Part 5 (March 2025)
  • Precision Electronics, Part 6 (April 2025)
  • Precision Electronics, Part 6 (April 2025)
  • Precision Electronics, part four (April 2025)
  • Precision Electronics, part four (April 2025)
  • Precision Electronics, part five (May 2025)
  • Precision Electronics, Part 7: ADCs (May 2025)
  • Precision Electronics, part five (May 2025)
  • Precision Electronics, Part 7: ADCs (May 2025)
  • Precision Electronics, part six (June 2025)
  • Precision Electronics, part six (June 2025)
Items relevant to "Surf Sound Simulator":
  • Surf Sound Simulator PCB [01111241] (AUD $10.00)
  • Surf Sound Simulator PCB pattern (PDF download) [01111241] (Free)
Items relevant to "JMP014 - Analog pace clock & stopwatch":
  • Firmware for JMP014 - Pace Clock (Software, Free)
Articles in this series:
  • Wired Infrared Remote Extender (May 2024)
  • Symbol USB Keyboard (May 2024)
  • Wired Infrared Remote Extender (May 2024)
  • Thermal Fan Controller (May 2024)
  • Symbol USB Keyboard (May 2024)
  • Thermal Fan Controller (May 2024)
  • Self Toggling Relay (June 2024)
  • Self Toggling Relay (June 2024)
  • Arduino Clap Light (June 2024)
  • Arduino Clap Light (June 2024)
  • Lava Lamp Display (July 2024)
  • Digital Compass (July 2024)
  • Digital Compass (July 2024)
  • Lava Lamp Display (July 2024)
  • JMP009 - Stroboscope and Tachometer (August 2024)
  • JMP007 - Ultrasonic Garage Door Notifier (August 2024)
  • JMP009 - Stroboscope and Tachometer (August 2024)
  • JMP007 - Ultrasonic Garage Door Notifier (August 2024)
  • IR Helper (September 2024)
  • IR Helper (September 2024)
  • No-IC Colour Shifter (September 2024)
  • No-IC Colour Shifter (September 2024)
  • JMP012 - WiFi Relay Remote Control (October 2024)
  • JMP012 - WiFi Relay Remote Control (October 2024)
  • JMP015 - Analog Servo Gauge (October 2024)
  • JMP015 - Analog Servo Gauge (October 2024)
  • JMP013 - Digital spirit level (November 2024)
  • JMP013 - Digital spirit level (November 2024)
  • JMP014 - Analog pace clock & stopwatch (November 2024)
  • JMP014 - Analog pace clock & stopwatch (November 2024)
  • WiFi weather logger (December 2024)
  • Automatic night light (December 2024)
  • WiFi weather logger (December 2024)
  • Automatic night light (December 2024)
  • BIG LED clock (January 2025)
  • Gesture-controlled USB lamp (January 2025)
  • Gesture-controlled USB lamp (January 2025)
  • BIG LED clock (January 2025)
  • Transistor tester (February 2025)
  • Wireless flashing LEDs (February 2025)
  • Transistor tester (February 2025)
  • Wireless flashing LEDs (February 2025)
  • Continuity Tester (March 2025)
  • RF Remote Receiver (March 2025)
  • Continuity Tester (March 2025)
  • RF Remote Receiver (March 2025)
  • Discrete 555 timer (April 2025)
  • Weather monitor (April 2025)
  • Discrete 555 timer (April 2025)
  • Weather monitor (April 2025)
Items relevant to "JMP013 - Digital spirit level":
  • Firmware for JMP013 - Digital Spirit Level (Software, Free)
Articles in this series:
  • Wired Infrared Remote Extender (May 2024)
  • Symbol USB Keyboard (May 2024)
  • Wired Infrared Remote Extender (May 2024)
  • Thermal Fan Controller (May 2024)
  • Symbol USB Keyboard (May 2024)
  • Thermal Fan Controller (May 2024)
  • Self Toggling Relay (June 2024)
  • Self Toggling Relay (June 2024)
  • Arduino Clap Light (June 2024)
  • Arduino Clap Light (June 2024)
  • Lava Lamp Display (July 2024)
  • Digital Compass (July 2024)
  • Digital Compass (July 2024)
  • Lava Lamp Display (July 2024)
  • JMP009 - Stroboscope and Tachometer (August 2024)
  • JMP007 - Ultrasonic Garage Door Notifier (August 2024)
  • JMP009 - Stroboscope and Tachometer (August 2024)
  • JMP007 - Ultrasonic Garage Door Notifier (August 2024)
  • IR Helper (September 2024)
  • IR Helper (September 2024)
  • No-IC Colour Shifter (September 2024)
  • No-IC Colour Shifter (September 2024)
  • JMP012 - WiFi Relay Remote Control (October 2024)
  • JMP012 - WiFi Relay Remote Control (October 2024)
  • JMP015 - Analog Servo Gauge (October 2024)
  • JMP015 - Analog Servo Gauge (October 2024)
  • JMP013 - Digital spirit level (November 2024)
  • JMP013 - Digital spirit level (November 2024)
  • JMP014 - Analog pace clock & stopwatch (November 2024)
  • JMP014 - Analog pace clock & stopwatch (November 2024)
  • WiFi weather logger (December 2024)
  • Automatic night light (December 2024)
  • WiFi weather logger (December 2024)
  • Automatic night light (December 2024)
  • BIG LED clock (January 2025)
  • Gesture-controlled USB lamp (January 2025)
  • Gesture-controlled USB lamp (January 2025)
  • BIG LED clock (January 2025)
  • Transistor tester (February 2025)
  • Wireless flashing LEDs (February 2025)
  • Transistor tester (February 2025)
  • Wireless flashing LEDs (February 2025)
  • Continuity Tester (March 2025)
  • RF Remote Receiver (March 2025)
  • Continuity Tester (March 2025)
  • RF Remote Receiver (March 2025)
  • Discrete 555 timer (April 2025)
  • Weather monitor (April 2025)
  • Discrete 555 timer (April 2025)
  • Weather monitor (April 2025)
Items relevant to "FlexiDice":
  • FlexiDice PCB set [08107241-2] (AUD $5.00)
  • PIC16F18146-I/SO programmed for the Flexidice [0810724A.HEX] (Programmed Microcontroller, AUD $10.00)
  • 1.3-inch blue OLED with 4-pin I²C interface (Component, AUD $15.00)
  • 1.3-inch white OLED with 4-pin I²C interface (Component, AUD $15.00)
  • FlexiDice kit (Component, AUD $30.00)
  • Firmware (C and HEX) files for the FlexiDice (Software, Free)
  • FlexiDice PCB patterns (PDF download) [08107241-2] (Free)
Items relevant to "0.91-inch OLED Screen":
  • Software for driving a 0.91in OLED module (Free)
Articles in this series:
  • El Cheapo Modules From Asia - Part 1 (October 2016)
  • El Cheapo Modules From Asia - Part 1 (October 2016)
  • El Cheapo Modules From Asia - Part 2 (December 2016)
  • El Cheapo Modules From Asia - Part 2 (December 2016)
  • El Cheapo Modules From Asia - Part 3 (January 2017)
  • El Cheapo Modules From Asia - Part 3 (January 2017)
  • El Cheapo Modules from Asia - Part 4 (February 2017)
  • El Cheapo Modules from Asia - Part 4 (February 2017)
  • El Cheapo Modules, Part 5: LCD module with I²C (March 2017)
  • El Cheapo Modules, Part 5: LCD module with I²C (March 2017)
  • El Cheapo Modules, Part 6: Direct Digital Synthesiser (April 2017)
  • El Cheapo Modules, Part 6: Direct Digital Synthesiser (April 2017)
  • El Cheapo Modules, Part 7: LED Matrix displays (June 2017)
  • El Cheapo Modules, Part 7: LED Matrix displays (June 2017)
  • El Cheapo Modules: Li-ion & LiPo Chargers (August 2017)
  • El Cheapo Modules: Li-ion & LiPo Chargers (August 2017)
  • El Cheapo modules Part 9: AD9850 DDS module (September 2017)
  • El Cheapo modules Part 9: AD9850 DDS module (September 2017)
  • El Cheapo Modules Part 10: GPS receivers (October 2017)
  • El Cheapo Modules Part 10: GPS receivers (October 2017)
  • El Cheapo Modules 11: Pressure/Temperature Sensors (December 2017)
  • El Cheapo Modules 11: Pressure/Temperature Sensors (December 2017)
  • El Cheapo Modules 12: 2.4GHz Wireless Data Modules (January 2018)
  • El Cheapo Modules 12: 2.4GHz Wireless Data Modules (January 2018)
  • El Cheapo Modules 13: sensing motion and moisture (February 2018)
  • El Cheapo Modules 13: sensing motion and moisture (February 2018)
  • El Cheapo Modules 14: Logarithmic RF Detector (March 2018)
  • El Cheapo Modules 14: Logarithmic RF Detector (March 2018)
  • El Cheapo Modules 16: 35-4400MHz frequency generator (May 2018)
  • El Cheapo Modules 16: 35-4400MHz frequency generator (May 2018)
  • El Cheapo Modules 17: 4GHz digital attenuator (June 2018)
  • El Cheapo Modules 17: 4GHz digital attenuator (June 2018)
  • El Cheapo: 500MHz frequency counter and preamp (July 2018)
  • El Cheapo: 500MHz frequency counter and preamp (July 2018)
  • El Cheapo modules Part 19 – Arduino NFC Shield (September 2018)
  • El Cheapo modules Part 19 – Arduino NFC Shield (September 2018)
  • El cheapo modules, part 20: two tiny compass modules (November 2018)
  • El cheapo modules, part 20: two tiny compass modules (November 2018)
  • El cheapo modules, part 21: stamp-sized audio player (December 2018)
  • El cheapo modules, part 21: stamp-sized audio player (December 2018)
  • El Cheapo Modules 22: Stepper Motor Drivers (February 2019)
  • El Cheapo Modules 22: Stepper Motor Drivers (February 2019)
  • El Cheapo Modules 23: Galvanic Skin Response (March 2019)
  • El Cheapo Modules 23: Galvanic Skin Response (March 2019)
  • El Cheapo Modules: Class D amplifier modules (May 2019)
  • El Cheapo Modules: Class D amplifier modules (May 2019)
  • El Cheapo Modules: Long Range (LoRa) Transceivers (June 2019)
  • El Cheapo Modules: Long Range (LoRa) Transceivers (June 2019)
  • El Cheapo Modules: AD584 Precision Voltage References (July 2019)
  • El Cheapo Modules: AD584 Precision Voltage References (July 2019)
  • Three I-O Expanders to give you more control! (November 2019)
  • Three I-O Expanders to give you more control! (November 2019)
  • El Cheapo modules: “Intelligent” 8x8 RGB LED Matrix (January 2020)
  • El Cheapo modules: “Intelligent” 8x8 RGB LED Matrix (January 2020)
  • El Cheapo modules: 8-channel USB Logic Analyser (February 2020)
  • El Cheapo modules: 8-channel USB Logic Analyser (February 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules (May 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules (May 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules, Part 2 (June 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules, Part 2 (June 2020)
  • El Cheapo Modules: Mini Digital Volt/Amp Panel Meters (December 2020)
  • El Cheapo Modules: Mini Digital Volt/Amp Panel Meters (December 2020)
  • El Cheapo Modules: Mini Digital AC Panel Meters (January 2021)
  • El Cheapo Modules: Mini Digital AC Panel Meters (January 2021)
  • El Cheapo Modules: LCR-T4 Digital Multi-Tester (February 2021)
  • El Cheapo Modules: LCR-T4 Digital Multi-Tester (February 2021)
  • El Cheapo Modules: USB-PD chargers (July 2021)
  • El Cheapo Modules: USB-PD chargers (July 2021)
  • El Cheapo Modules: USB-PD Triggers (August 2021)
  • El Cheapo Modules: USB-PD Triggers (August 2021)
  • El Cheapo Modules: 3.8GHz Digital Attenuator (October 2021)
  • El Cheapo Modules: 3.8GHz Digital Attenuator (October 2021)
  • El Cheapo Modules: 6GHz Digital Attenuator (November 2021)
  • El Cheapo Modules: 6GHz Digital Attenuator (November 2021)
  • El Cheapo Modules: 35MHz-4.4GHz Signal Generator (December 2021)
  • El Cheapo Modules: 35MHz-4.4GHz Signal Generator (December 2021)
  • El Cheapo Modules: LTDZ Spectrum Analyser (January 2022)
  • El Cheapo Modules: LTDZ Spectrum Analyser (January 2022)
  • Low-noise HF-UHF Amplifiers (February 2022)
  • Low-noise HF-UHF Amplifiers (February 2022)
  • A Gesture Recognition Module (March 2022)
  • A Gesture Recognition Module (March 2022)
  • Air Quality Sensors (May 2022)
  • Air Quality Sensors (May 2022)
  • MOS Air Quality Sensors (June 2022)
  • MOS Air Quality Sensors (June 2022)
  • PAS CO2 Air Quality Sensor (July 2022)
  • PAS CO2 Air Quality Sensor (July 2022)
  • Particulate Matter (PM) Sensors (November 2022)
  • Particulate Matter (PM) Sensors (November 2022)
  • Heart Rate Sensor Module (February 2023)
  • Heart Rate Sensor Module (February 2023)
  • UVM-30A UV Light Sensor (May 2023)
  • UVM-30A UV Light Sensor (May 2023)
  • VL6180X Rangefinding Module (July 2023)
  • VL6180X Rangefinding Module (July 2023)
  • pH Meter Module (September 2023)
  • pH Meter Module (September 2023)
  • 1.3in Monochrome OLED Display (October 2023)
  • 1.3in Monochrome OLED Display (October 2023)
  • 16-bit precision 4-input ADC (November 2023)
  • 16-bit precision 4-input ADC (November 2023)
  • 1-24V USB Power Supply (October 2024)
  • 1-24V USB Power Supply (October 2024)
  • 14-segment, 4-digit LED Display Modules (November 2024)
  • 0.91-inch OLED Screen (November 2024)
  • 0.91-inch OLED Screen (November 2024)
  • 14-segment, 4-digit LED Display Modules (November 2024)
  • The Quason VL6180X laser rangefinder module (January 2025)
  • TCS230 Colour Sensor (January 2025)
  • The Quason VL6180X laser rangefinder module (January 2025)
  • TCS230 Colour Sensor (January 2025)
  • Using Electronic Modules: 1-24V Adjustable USB Power Supply (February 2025)
  • Using Electronic Modules: 1-24V Adjustable USB Power Supply (February 2025)
Items relevant to "3D Printer Filament Dryer, Part 2":
  • Filament Dryer Control PCB [28110241] (AUD $7.50)
  • PIC16F15214-I/P programmed for the 3D Printer Filament Dryer [2811024A.HEX] (Programmed Microcontroller, AUD $10.00)
  • Firmware and 3D printing (STL) files for the 3D Printer Filament Dryer (Software, Free)
  • Filament Dryer Control PCB pattern (PDF download) [28110241] (Free)
  • 3D Printer Filament Dryer drilling templates (Panel Artwork, Free)
Articles in this series:
  • 3D Printer Filament Dryer, Part 1 (October 2024)
  • 3D Printer Filament Dryer, Part 1 (October 2024)
  • 3D Printer Filament Dryer, Part 2 (November 2024)
  • 3D Printer Filament Dryer, Part 2 (November 2024)

Purchase a printed copy of this issue for $13.00.

SILICON SILIC CHIP www.siliconchip.com.au Publisher/Editor Nicholas Vinen Technical Editor John Clarke – B.E.(Elec.) Technical Staff Bao Smith – B.Sc. Tim Blythman – B.E., B.Sc. Advertising Enquiries (02) 9939 3295 adverts<at>siliconchip.com.au Regular Contributors Allan Linton-Smith Dave Thompson David Maddison – B.App.Sc. (Hons 1), PhD, Grad.Dip.Entr.Innov. Geoff Graham Associate Professor Graham Parslow Dr Hugo Holden – B.H.B, MB.ChB., FRANZCO Ian Batty – M.Ed. Phil Prosser – B.Sc., B.E.(Elec.) Cartoonist Louis Decrevel loueee.com Founding Editor (retired) Leo Simpson – B.Bus., FAICD Silicon Chip is published 12 times a year by Silicon Chip Publications Pty Ltd. ACN 626 922 870. ABN 20 880 526 923. All material is copyright ©. No part of this publication may be reproduced without the written consent of the publisher. Subscription rates (Australia only) 6 issues (6 months): $70 12 issues (1 year): $130 24 issues (2 years): $245 Online subscription (Worldwide) 6 issues (6 months): $52.50 12 issues (1 year): $100 24 issues (2 years): $190 For overseas rates, see our website or email silicon<at>siliconchip.com.au * recommended & maximum price only Editorial office: Unit 1 (up ramp), 234 Harbord Rd, Brookvale, NSW 2100. Postal address: PO Box 194, Matraville, NSW 2036. Phone: (02) 9939 3295. ISSN: 1030-2662 Printing and Distribution: Editorial Viewpoint The hydraulic analogy is valuable for beginners Recently, I came across someone who was new to electronics, explaining that they were having a lot of trouble understanding how even simple circuits work. It reminded me of how helpful I found the hydraulic analogy when I was first learning electronics. Many readers will be familiar with this, and some will also recognise how all sorts of other physical systems (involving heat transfer, mechanical energy, spring oscillation and more) can be modelled similarly to electronic circuits. This analogy involves thinking about an electronic circuit like a series of water pipes instead of wires. The flow of water is equivalent to the flow of electrons, with the volume of water that flows being equivalent to current and the pressure of water at a given point (or, more accurately, pressure difference between two points) being similar to the voltage in an electronic circuit. The equivalent for resistors are skinny pipes; the smaller the diameter of a pipe, the more it resists the flow of water, the greater the pressure (voltage) drop through that pipe, and the more restrictive it is to current flow. Just like with electrical conductors, the smaller the cross-sectional area of a pipe, the higher its ‘resistance’. A power supply can be considered like a pump, or alternatively, water being delivered by a reservoir at a higher level. In either case, the source provides both water pressure and flow. Capacitors are modelled as rubber bladders. As the pressure (‘voltage’) increases, the bladder expands and stores more water (‘charge’). When the pressure drops, the bladder shrinks and pushes water out, briefly sustaining the pressure as it does so. Inductors are equivalent to a turbine in the water flow, with a higher inductance being equivalent to a turbine with more mass (inertia). As water (‘current’) flows through the turbine, it spins up at a rate determined by the pressure differential across it. If the source pressure (‘voltage’) drops, the turbine continues to spin and force water (‘current’) through the outlet. Diodes are easy to model: they are simply one-way valves. The equivalents to transistors are valves that can open or close partially to restrict (or not) the flow of water. A Mosfet equivalent would be controlled by the pressure in a second pipe; you could imagine this second pipe joining the main one, except that there is a rubber diaphragm between them. As the pressure in this second pipe varies relative to the first, the diaphragm flexes and actuates the valve to control the flow of water. A bipolar transistor would be modelled similarly, except that the second pipe would actually have a one-way valve opening into the main one, allowing a small water current to flow. That current flow would impinge upon a flap that controls the opening of the valve, opening it more as the flow through that small valve increases. There are real hydraulic devices that operate like that, called ‘hydraulic servos’, although they are actually closer in behaviour to op amps (another useful analogy!). Other components can be modelled too (zener diodes, Triacs, logic gates etc). These are not necessarily perfect analogies, although I think a hydraulic system could be built that operated pretty similarly to an electronic circuit. The point, though, is that this analogy makes it a lot easier to visualise what the electrons are doing in a circuit, at least until you have more experience with electronics and the understanding comes more naturally. by Nicholas Vinen 24-26 Lilian Fowler Pl, Marrickville 2204 2 Silicon Chip Australia's electronics magazine siliconchip.com.au