Silicon ChipAdvertising Index - February 2022 SILICON CHIP
  1. Outer Front Cover
  2. Contents
  3. Publisher's Letter: Be wary of devices that require apps to work
  4. Subscriptions
  5. Review: Radio Girl by Nicholas Vinen
  6. Feature: All About Batteries – Part 2 by Dr David Maddison
  7. Project: Dual Hybrid Power Supply – Pt1 by Phil Prosser
  8. Feature: Low-noise HF-UHF Amplifiers by Jim Rowe
  9. Project: Fan Controller & Loudspeaker Protector by John Clarke
  10. Product Showcase
  11. Project: Solid-State Tesla Coil by Flavio Spedalieri
  12. Review: TL866II Universal Programmer by Tim Blythman
  13. Project: Remote Gate Controller by Dr Hugo Holden
  14. Serviceman's Log: The accordion job by Dave Thompson
  15. Vintage Radio: Tasma 305 'rat radio' by Fred Lever
  16. PartShop
  17. Market Centre
  18. Advertising Index
  19. Outer Back Cover

This is only a preview of the February 2022 issue of Silicon Chip.

You can view 35 of the 112 pages in the full issue, including the advertisments.

For full access, purchase the issue for $10.00 or subscribe for access to the latest issues.

Articles in this series:
  • All About Batteries - Part 1 (January 2022)
  • All About Batteries - Part 1 (January 2022)
  • All About Batteries – Part 2 (February 2022)
  • All About Batteries – Part 2 (February 2022)
  • All About Batteries, part three (March 2022)
  • All About Batteries, part three (March 2022)
Items relevant to "Dual Hybrid Power Supply – Pt1":
  • Intelligent Dual Hybrid Power Supply PCB set (AUD $25.00)
  • Intelligent Dual Hybrid Power Supply regulator PCB [18107211] (AUD $7.50)
  • Intelligent Dual Hybrid Power Supply front panel control PCB [18107212] (AUD $2.50)
  • DSP Crossover CPU PCB [01106193] (AUD $5.00)
  • DSP Crossover LCD Adaptor PCB [01106196] (AUD $2.50)
  • PIC32MZ2048EFH064-250I/PT programmed for the Intelligent Dual Hybrid Power Supply [0110619A.HEX] (Programmed Microcontroller, AUD $30.00)
  • 128x64 Blue LCD screen with KS0108-compatible controller (Component, AUD $30.00)
  • Hard-to-get parts for the Intelligent Dual Hybrid Power Supply regulator board (Component, AUD $100.00)
  • Hard-to-get parts for the Intelligent Dual Hybrid Power Supply CPU board (Component, AUD $60.00)
  • LCD panel bezel for the Dual Intelligent Hybrid Power Supply (PCB, AUD $5.00)
  • Intelligent Dual Hybrid Power Supply firmware [0110619A.HEX] (Software, Free)
  • Intelligent Dual Hybrid Power Supply PCB patterns [18107211/2] (Free)
  • DSP Active Crossover/DDS/Reflow Oven PCB patterns (PDF download) [01106191-6] (Free)
Articles in this series:
  • Dual Hybrid Power Supply – Pt1 (February 2022)
  • Dual Hybrid Power Supply – Pt1 (February 2022)
  • Dual Hybrid Power Supply, part two (March 2022)
  • Dual Hybrid Power Supply, part two (March 2022)
  • Intelligent Dual Hybrid Power Supply, part one (June 2025)
  • Intelligent Dual Hybrid Power Supply, part one (June 2025)
Articles in this series:
  • El Cheapo Modules From Asia - Part 1 (October 2016)
  • El Cheapo Modules From Asia - Part 1 (October 2016)
  • El Cheapo Modules From Asia - Part 2 (December 2016)
  • El Cheapo Modules From Asia - Part 2 (December 2016)
  • El Cheapo Modules From Asia - Part 3 (January 2017)
  • El Cheapo Modules From Asia - Part 3 (January 2017)
  • El Cheapo Modules from Asia - Part 4 (February 2017)
  • El Cheapo Modules from Asia - Part 4 (February 2017)
  • El Cheapo Modules, Part 5: LCD module with I²C (March 2017)
  • El Cheapo Modules, Part 5: LCD module with I²C (March 2017)
  • El Cheapo Modules, Part 6: Direct Digital Synthesiser (April 2017)
  • El Cheapo Modules, Part 6: Direct Digital Synthesiser (April 2017)
  • El Cheapo Modules, Part 7: LED Matrix displays (June 2017)
  • El Cheapo Modules, Part 7: LED Matrix displays (June 2017)
  • El Cheapo Modules: Li-ion & LiPo Chargers (August 2017)
  • El Cheapo Modules: Li-ion & LiPo Chargers (August 2017)
  • El Cheapo modules Part 9: AD9850 DDS module (September 2017)
  • El Cheapo modules Part 9: AD9850 DDS module (September 2017)
  • El Cheapo Modules Part 10: GPS receivers (October 2017)
  • El Cheapo Modules Part 10: GPS receivers (October 2017)
  • El Cheapo Modules 11: Pressure/Temperature Sensors (December 2017)
  • El Cheapo Modules 11: Pressure/Temperature Sensors (December 2017)
  • El Cheapo Modules 12: 2.4GHz Wireless Data Modules (January 2018)
  • El Cheapo Modules 12: 2.4GHz Wireless Data Modules (January 2018)
  • El Cheapo Modules 13: sensing motion and moisture (February 2018)
  • El Cheapo Modules 13: sensing motion and moisture (February 2018)
  • El Cheapo Modules 14: Logarithmic RF Detector (March 2018)
  • El Cheapo Modules 14: Logarithmic RF Detector (March 2018)
  • El Cheapo Modules 16: 35-4400MHz frequency generator (May 2018)
  • El Cheapo Modules 16: 35-4400MHz frequency generator (May 2018)
  • El Cheapo Modules 17: 4GHz digital attenuator (June 2018)
  • El Cheapo Modules 17: 4GHz digital attenuator (June 2018)
  • El Cheapo: 500MHz frequency counter and preamp (July 2018)
  • El Cheapo: 500MHz frequency counter and preamp (July 2018)
  • El Cheapo modules Part 19 – Arduino NFC Shield (September 2018)
  • El Cheapo modules Part 19 – Arduino NFC Shield (September 2018)
  • El cheapo modules, part 20: two tiny compass modules (November 2018)
  • El cheapo modules, part 20: two tiny compass modules (November 2018)
  • El cheapo modules, part 21: stamp-sized audio player (December 2018)
  • El cheapo modules, part 21: stamp-sized audio player (December 2018)
  • El Cheapo Modules 22: Stepper Motor Drivers (February 2019)
  • El Cheapo Modules 22: Stepper Motor Drivers (February 2019)
  • El Cheapo Modules 23: Galvanic Skin Response (March 2019)
  • El Cheapo Modules 23: Galvanic Skin Response (March 2019)
  • El Cheapo Modules: Class D amplifier modules (May 2019)
  • El Cheapo Modules: Class D amplifier modules (May 2019)
  • El Cheapo Modules: Long Range (LoRa) Transceivers (June 2019)
  • El Cheapo Modules: Long Range (LoRa) Transceivers (June 2019)
  • El Cheapo Modules: AD584 Precision Voltage References (July 2019)
  • El Cheapo Modules: AD584 Precision Voltage References (July 2019)
  • Three I-O Expanders to give you more control! (November 2019)
  • Three I-O Expanders to give you more control! (November 2019)
  • El Cheapo modules: “Intelligent” 8x8 RGB LED Matrix (January 2020)
  • El Cheapo modules: “Intelligent” 8x8 RGB LED Matrix (January 2020)
  • El Cheapo modules: 8-channel USB Logic Analyser (February 2020)
  • El Cheapo modules: 8-channel USB Logic Analyser (February 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules (May 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules (May 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules, Part 2 (June 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules, Part 2 (June 2020)
  • El Cheapo Modules: Mini Digital Volt/Amp Panel Meters (December 2020)
  • El Cheapo Modules: Mini Digital Volt/Amp Panel Meters (December 2020)
  • El Cheapo Modules: Mini Digital AC Panel Meters (January 2021)
  • El Cheapo Modules: Mini Digital AC Panel Meters (January 2021)
  • El Cheapo Modules: LCR-T4 Digital Multi-Tester (February 2021)
  • El Cheapo Modules: LCR-T4 Digital Multi-Tester (February 2021)
  • El Cheapo Modules: USB-PD chargers (July 2021)
  • El Cheapo Modules: USB-PD chargers (July 2021)
  • El Cheapo Modules: USB-PD Triggers (August 2021)
  • El Cheapo Modules: USB-PD Triggers (August 2021)
  • El Cheapo Modules: 3.8GHz Digital Attenuator (October 2021)
  • El Cheapo Modules: 3.8GHz Digital Attenuator (October 2021)
  • El Cheapo Modules: 6GHz Digital Attenuator (November 2021)
  • El Cheapo Modules: 6GHz Digital Attenuator (November 2021)
  • El Cheapo Modules: 35MHz-4.4GHz Signal Generator (December 2021)
  • El Cheapo Modules: 35MHz-4.4GHz Signal Generator (December 2021)
  • El Cheapo Modules: LTDZ Spectrum Analyser (January 2022)
  • El Cheapo Modules: LTDZ Spectrum Analyser (January 2022)
  • Low-noise HF-UHF Amplifiers (February 2022)
  • Low-noise HF-UHF Amplifiers (February 2022)
  • A Gesture Recognition Module (March 2022)
  • A Gesture Recognition Module (March 2022)
  • Air Quality Sensors (May 2022)
  • Air Quality Sensors (May 2022)
  • MOS Air Quality Sensors (June 2022)
  • MOS Air Quality Sensors (June 2022)
  • PAS CO2 Air Quality Sensor (July 2022)
  • PAS CO2 Air Quality Sensor (July 2022)
  • Particulate Matter (PM) Sensors (November 2022)
  • Particulate Matter (PM) Sensors (November 2022)
  • Heart Rate Sensor Module (February 2023)
  • Heart Rate Sensor Module (February 2023)
  • UVM-30A UV Light Sensor (May 2023)
  • UVM-30A UV Light Sensor (May 2023)
  • VL6180X Rangefinding Module (July 2023)
  • VL6180X Rangefinding Module (July 2023)
  • pH Meter Module (September 2023)
  • pH Meter Module (September 2023)
  • 1.3in Monochrome OLED Display (October 2023)
  • 1.3in Monochrome OLED Display (October 2023)
  • 16-bit precision 4-input ADC (November 2023)
  • 16-bit precision 4-input ADC (November 2023)
  • 1-24V USB Power Supply (October 2024)
  • 1-24V USB Power Supply (October 2024)
  • 14-segment, 4-digit LED Display Modules (November 2024)
  • 0.91-inch OLED Screen (November 2024)
  • 0.91-inch OLED Screen (November 2024)
  • 14-segment, 4-digit LED Display Modules (November 2024)
  • The Quason VL6180X laser rangefinder module (January 2025)
  • TCS230 Colour Sensor (January 2025)
  • The Quason VL6180X laser rangefinder module (January 2025)
  • TCS230 Colour Sensor (January 2025)
  • Using Electronic Modules: 1-24V Adjustable USB Power Supply (February 2025)
  • Using Electronic Modules: 1-24V Adjustable USB Power Supply (February 2025)
Items relevant to "Fan Controller & Loudspeaker Protector":
  • 500W Amplifier Module PCB [01107021 RevD] (AUD $25.00)
  • Hard-to-get parts for the 500W Amplifier (Component, AUD $180.00-200.00)
  • Parts collection for the 500W Amplifier (Component, AUD $235.00-250.00)
  • 500W Amplifier Module PCB pattern (PDF download) [01107021] (Free)
  • Cooling Fan Controller & Loudspeaker Protector PCB [01102221] (AUD $5.00)
  • PIC16F1459-I/P programmed for the Cooling Fan Controller & Loudspeaker Protector [0110222A.HEX] (Programmed Microcontroller, AUD $10.00-15.00)
  • 4-pin PWM fan header (Component, AUD $1.20)
  • Cooling Fan Controller & Loudspeaker Protector firmware [0110222A.HEX] (Software, Free)
  • Cooling Fan Controller & Loudspeaker Protector PCB pattern (PDF download) [01111211] (Free)
Articles in this series:
  • Fan Controller & Loudspeaker Protector (February 2022)
  • Fan Controller & Loudspeaker Protector (February 2022)
  • Amplifier Clipping Indicator (March 2022)
  • Amplifier Clipping Indicator (March 2022)
  • 500W Power Amplifier, Part 1 (April 2022)
  • 500W Power Amplifier, Part 1 (April 2022)
  • 500W Power Amplifier, Part 2 (May 2022)
  • 500W Power Amplifier, Part 2 (May 2022)
  • 500W Power Amplifier, Part 3 (June 2022)
  • 500W Power Amplifier, Part 3 (June 2022)
Items relevant to "Solid-State Tesla Coil":
  • Solid State Tesla Coil driver PCBs [26102221-2] (AUD $7.50)
  • Solid State Tesla Coil driver PCB patterns (PDF download) [26102221-2] (Free)
Items relevant to "Remote Gate Controller":
  • Driveway Gate Controller PCB [11009121] (AUD $20.00)
  • Remote Gate Controller PCB pattern (PDF download) [11009121] (Free)

Purchase a printed copy of this issue for $11.50.

Obsolete parts in older projects Could you please tell me whether any hard-to-get parts are required to build the Constant High-Current Source from June 2002 (siliconchip. com.au/Article/4065) or the 50W DC Electronic Load from September 2002 (siliconchip.com.au/Article/4029)? I realise that you probably don’t have PCBs for these projects. (R. M., Melville, WA) ● For the Constant High-Current Source from June 2002, the heatsinking arrangements might need to be changed to suit available heatsinks. The remaining parts are commonly available. For the 50W DC Electronic Load Advertising Index Altronics.................................37-40 Dave Thompson........................ 111 Digi-Key Electronics...................... 3 Emona Instruments.................. IBC Jaycar.............................. IFC,53-60 Keith Rippon Kit Assembly....... 111 LD Electronics........................... 111 LEDsales................................... 111 Microchip Technology.................. 5 Mouser Electronics..................OBC Ocean Controls............................. 7 PMD Way................................... 111 SC RTV&H on USB...................... 75 SC USB Cable Tester.................. 91 SC Vintage Radio Collection...... 10 Silicon Chip Subscriptions.......... 6 Silicon Chip Shop.................... 101 The Loudspeaker Kit.com............ 9 Tronixlabs.................................. 111 Vintage Radio Repairs.............. 111 Wagner Electronics..................... 87 112 Silicon Chip from September 2002, the STW34NB20 200V, 34A N-channel Mosfet is obsolete, so an alternative will be required. Suitable parts that are currently available include the IRFP240PBF, IRFP250(N)PBF, IRFP260(N/M)PBF and IXTH26P20P. Searching for another discontinued part I am trying to build the Sound Level Meter from your Electronics Test Bench book but I am having difficulty finding a three-position, two-pole switch with the correct pin placement. This project is probably over 20 years old. Is there some way I can mimic what the switch does with jumper pins, perhaps? Failing that, where would I get such a switch? (S. N., Clayton North, Vic) ● You are right that switches with the contact arrangement used in that project are no longer available. Switches are available with a similar layout, but you will have to wire it to the board using flying leads. You could use a DP4T slide switch from Altronics (Cat S2040) and wire the switch terminals to the PCB, with the third and fourth positions wired in parallel. You could also use the Altronics S2033 (4P3T) slide switch and ignore the third pole. It would also be possible to wire up a rotary switch like Altronics S3008 or S3022, or Jaycar SR1212. The PreChamp is an old design I am building several PreChamp pre-amplifiers (July 1994; siliconchip. com.au/Article/5252) to increase the signal output from the line output jack (not the headphone jack) on a TV, and plugging the resulting increased signal into a Bluetooth transmitter then to Bluetooth headphones. It works OK, but I’m not happy with the resulting audio quality when compared to another pair of wireless headphones that I have. Using a signal generator and a Hantek USB scope, I have discovered that the frequency response of the PreChamp is not flat. With a constant input level at all frequencies, I found that at 100Hz the output level was 85mV but at 10kHz, the output level climbed to 200mV, and at 15kHz, the level was 225mV. Australia's electronics magazine I have altered the Preamp’s gain by changing the two resistors to 1500W and 150W using the formula printed in the magazine, giving a gain of approximately 11 times, which is around 21dB. Would this have altered the frequency response of the PreChamp? I suspect not. Can you suggest any components that I can change the value of to get the frequency response flatter? (N. L., Christchurch, NZ) ● The PreChamp is quite an old design and we would not design something like that today. As a result, it has relatively poor frequency response flatness. Still, it should not be behaving in the manner you have described. Our circuit analysis of the original design shows that it has a plateau-type response with -3dB points at around 60Hz and 100kHz, and -1dB points at around 115Hz and 37kHz. So it suffers a fair bit at the lower frequency end, but should be pretty flat at the high end, up to about 20kHz. Changing the gain-setting resistors doesn’t have much effect on the calculated response. Note that we published a new design in January 2013 – the Champion (and Pre-Champion). That circuit has a much flatter frequency response. We even published frequency response and distortion graphs in that article, unlike the original Champ/PreChamp. Still, we aren’t sure why you are getting an increased response at higher frequencies. That points to an increase in feedback impedance with frequency, but the only non-resistive element in the feedback network is the 1.5nF capacitor, which should have the opposite effect. The only explanations we can come up with are that your input coupling capacitor is too low in value or faulty, which would cause lower frequencies to have more attenuation and thus give you a rising response with frequency. It could also be a similar problem with the output coupling capacitor. SC The March 2022 issue is due on sale in newsagents by Monday, February 28th. Expect postal delivery of subscription copies in Australia between February 28th and March 11th. siliconchip.com.au