
MIGRATING FROM THE PIC16F88

There are many very good articles, tutorials and videos available on the internet that cover the
topic of Microchip's ‘Enhanced Mid-Range’ (EMR) PIC family. The Figures used in this
document are screenshots from Microchip Technology’s “Introduction to the Enhanced Mid-
Range Architecture” PDF, which is old but quite good. (references are specified at end of this
document)

But as good as these articles may be, I couldn’t find much information detailing how to go about
the practical process of migration to such new devices. Microchip actually began the release of
this new EMR family about 10 years ago, but like me, I suspect many people had no pressing
reason to seriously delve into this new family until now.

 Those who are somewhat familiar with mid-range (8 bit) PIC’s may find this article useful.

THE VANISHING PIC16F88?

Silicon Chip has had many great and timeless PIC projects over the years, like the L-C Meter,
RF Level Meter, a Frequency counter and the Solar PWM chargers but to name a few. Most of
these Silicon Chip projects were based on the versatile PIC16f88, as it was inexpensive and had
more than enough I/O, ADC and memory to suit the needs of most small projects.

It is well known that Microchip Technology Inc support their microprocessors for many years (if
not decades!) after initial release, and as Silicon Chip provided the circuits and source assembler
code (*.ASM) for most of these projects, should anything fail I felt confident I could fully
maintain these projects for many years to come.

So what could possibly go wrong?

Well, for some reason it seems most local supplies of the PIC16F88 have all but dried up. This
may be linked to the general microprocessor chip shortage that the covid19 pandemic has
sparked (colloquially known as the ‘covid19 supermarket toilet roll” phenomenon), but there are
probably lots of other factors, such as the importance of other newer PIC’s with better features
and lower prices being Microchips first priority.

 So, even though you can theoretically still buy 16F88’s from Microchip (for about US$4 each),
they are also out of stock, and their next production run is scheduled for December 2022! You
can still source small quantities via eBay, but with supply so limited, prices are rapidly
escalating.

So here lies the problem; the 16f88 is becoming hard to get, and although Microchip have a
newer pin-compatible replacement devices available at a very reasonable price (typically only
~US$2 each), the internal architecture has changed to the point that the original Silicon Chip
source code is totally incompatible. The 16f88 was based on what Microchip termed their 8-bit
"mid-range" (MR) family architecture, but the replacement devices now use the newer
"enhanced mid-range" (EMR) architecture.

Now of course many older Silicon Chip 16f88 project designs have been superseded or are no
longer viable (for all sorts of reasons), and so the desire to migrate 16f88 code really only arises

Page 1

if you have a special project that you value …or, if you are like me, you just enjoy tinkering in
assembler and want to understand the MR-to-EMR migration process first hand!

So this is where the story begins.

MY BACKGROUND

Pre-retirement, I had a career in RF electronics. I was ‘hands on’ initially, but much less so in my
last couple of decades. The core equipment that I worked on had a growing reliance on
microprocessors, either involved in the frequency synthesis, RF channel memory, display
generation or in some sort of automation task. So a basic understanding of microprocessors was
essential to my work, but the devices we came across were generally pre-programmed industrial
devices – and not the sort you would likely find in a Silicon Chip project!

In the early 1980's, I spent many weekends getting to understand how the 6502 and 6800
processors worked at machine code level. At that time, these types of microprocessors were very
popular (think of Atari, Commodore 64, Apple II, BBC micro...). However I quickly learned that
these early microprocessors were not the ideal platform for simple DIY home projects, as any
design required a plethora of associated circuitry, such as data latches, clocks, SRAM, EPROM,
I/O, etc.

None the less, this early training in assembler proved to be a good foundation, in that the core
knowledge still remains applicable to many current microprocessor platforms. For some reason, I
found that higher-level programming languages like Fortran or C somehow felt too abstract and
detached, and so despite the passing of the years I have not lost an appreciation of simple and
elegant assembly code. To wit, a brilliant example of a useful range-test macro… in just 4 lines
of PIC code!

Range_chk macro ; Check if pulse is 4500uS +/-10%
movf #50uS_COUNT,w ; W = #count of 50uS edge interrupts
addlw 255-(4950/50) ; W= W + (255 - MAX). [Carry=1 If #count >MAX]
addlw (4950/50)-(4050/50)+1 ; W= W+(MAX -MIN)+1. [Carry=0 if #count was<MIN]
btfss CARRYBIT ; (Carry=1 only if within MIN-MAX range)
endm ; at this line, Carry=0 so branch to process a FAIL

; at this line, Carry=1 so add code to process a PASS

A couple of decades later, enter Silicon Chip and several articles by Stan Swan on the "new
millenium 555", the new PICAXE-08! The PICAXE-08 was essentially a PIC12f629 (or similar)
preloaded with a proprietary bootloader. Programs could be quickly created with a free PIC-basic
programmer/compiler, supplied by Revolution Education (RevEd). These PIC’s required no need
for any extra circuitry apart from perhaps a few switches and LED’s. All the flash memory,
SRAM and I/O was included in the one chip!

So the PICAXE reignited my interest in microcontrollers, and with my prior familiarity with
assembly code programming, I quickly moved to MPLAB assembler programming of 8bit PIC
devices like the 16f628 (which even included a UART serial port!) which were fun and easy to
manage. My various DIY projects at the time included things like a RS232 sampler/sniffer, a
GPS NMEA string decoder, a DDS audio tone generator and the like.

Page 2

ASSUMPTIONS

This article is aimed to address some of the questions around how to migrate from a 16f88 to a
newer extended mid-range device. It is not intended as a tutorial for PIC’s, PIC assembler or for
the MPLAB IDE. I assume the reader has some knowledge of the 16F88 already, or at least has a
basic knowledge of other 8-bit PIC’s and of assembly language.

The Microchip documentation website (https://www.microchip.com/doclisting/TechDoc.aspx)
provides access to many relevant user guides, and after you install MPLAB IDE on your PC (see
https://www.microchip.com/en-us/tools-resources/ for free downloads) you will notice it
includes a document directory with lots of useful and relevant documentation.

If you are a glutton for punishment, Microchip also have an online “university” with a wide
selection of free courses! (https://mu.microchip.com/page/all-courses)

ENTER MPLAB-X

Around 2015, Microchip upgraded their trusty MPLAB IDE (integrated development platform)
programmer to the latest MPLB-X IPE (integrated programming environment) platform.

This is a great boon for C programmers, or those with Mac, Linux and newer Windows operating
systems (as the older MPLAB v8.xx was available only in 32bit Windows format)

This new programmer combines support for the entire range of PIC and AVR devices, and
includes support for their new range of programmer interfaces and debuggers. Additionally, it
has a whole new suite of graphical interfaces, debugging support and lots of C library support.

But as a consequence of all these bells and whistles, it has become quite bloated with features
that users like me will likely never use. But my biggest disappointment was that there is no
support for their MPASM assembly language programmer, nor their trusty old PicKit3 interface!
Looking on the Microchip forum sites, it appears I am not alone in lamenting this oversight.

I must point out that MPLAB-X does provide a new XC8 PIC Assembler, which is a free-
standing or integrated cross-assembler and linker package. If you are new to assembler, you may
love it. But for my part, I am happy to stick with MPASM in MPLAB v8.xx.

Realistically, MPLAB-X is possibly ideal for those modern users with C programming skills and
who want to create and debug their code as quickly as possible (after all, time is money!). And
this is where the MPLAB-X ties in neatly with the newer PIC EMR devices – many of these
EMR architecture changes (like the enhanced indirect addressing capability and virtual linear
bank access) are actually designed to allow easier coding under the C language.

But for all of its supposed benefits, C won’t necessarily create beautiful, compact, fast & elegant
machine code that I am interested in.

BACK TO THE FUTURE – MPLAB IDE

Thankfully, Microchip not only support their older devices, they still provide previous versions
of their MPLAB IDE (Integrated Development Environment) programmer for free! See…

Page 3

https://www.microchip.com/doclisting/TechDoc.aspx%20
https://mu.microchip.com/page/all-courses
https://www.microchip.com/en-us/tools-resources/%20

https://www.microchip.com/en-us/tools-resources/archives/mplab-ecosystem

Even MPLAB versions of v6.x, v7.x and v8.x are all available at this website, but only the latest
versions will have much support for EMR devices.

Keep in mind that the last version of MPLAB IDE was version 8.92 (circa 2014), and it will
only recognise and program the devices that had been released at the time. That being said,
the good news is it will happily program the popular 12F617, as well as EMR devices like
the 16F1459, 16F1509 and the 16F1827/47.

MPLAB IDE v8.92 also supports the PicKit2 or PicKit3 programmers (which you probably have
lying around) plus it has some good debugging facilities (like its ICD 3 debugger).

I actually find the most useful debugging tool is the SIM(ulator) tool included in the IDE. Within
a couple of key clicks, the simulator runs through your simulated code on screen, while
simultaneously showing the status relevant registers or flags in separate windows. You can open
windows to view SFR’s, clock cycles, stack depth, flags and and variables. Double-click on your
source code to add a few breakpoints, and in most cases I find I can prove (or disprove!) my code
fairly quickly.

16F88 SUBSTITUTE

All new extended mid-range devices all have the number code of PIC16f1xxxx. You may also
come across some 8-bit 12f1xxxx PIC’s too, but these use the 12-bit word flash, not the 14 bit
word flash like the 16f88.

Selecting a replacement for the 16f88 turned out to be quite easy. The Microchip website has a
parametric comparison tool, it turns out the PIC16f1827 is a good substitute. Eventually I settled
on the PIC16f1847 as it has double the flash memory for just a few cents more.

Parameter 16f88 16f1847

DIL Pin Count 18 Same!

Number of I/O Pins 16 Same!

Max freq / CPU MIPS 20MHz / 5MIPS 32MHz / 8MIPS

Data EEPROM (bytes) 256 Same!

SRAM (bytes) 368 in 4 banks 1024 in 32 banks

Program Flash Memory
(words)

= 4096 (words) = 2 x 2048
pages

8192 (words) = 4 x 2048
pages

Max ADC Resolution (bits) 10 Same!

ADC Channels 7 12

Capture/Compare/PWM
(CCP)

1 2

Number of Comparators 2 Same!

Page 4

https://www.microchip.com/en-us/tools-resources/archives/mplab-ecosystem

SPI 1 2

Max 16 Bit Digital Timers 1 Same!

Max 8 Bit Digital Timers 2 4

Operating Voltage 2 - 5.5V 1.8 - 5.5V

Microchip price US$3.42
 (but unavailable till
Dec2022!)

US$1.95
(in stock)

As for those simpler Silicon Chip projects that used the older 12f675, migration to EMR
architecture is not necessary as this chip is freely available and still cheap. However you would
be unwise to design a new project based on the 12f675/683, as the newer 12f617 is cheaper and
more powerful, so is a far better choice.

Page 5

SO WHAT IS EMR ARCHITECTURE?

Enhanced mid-range core devices have additional features, additional instructions and generally
more flash code space and SRAM. The new EMR architecture is intended to free up some
previous architecture limitations and make the devices easier to program in MPLAB-X using the
C++ language.

Opcodes

The RISC (reduced instruction set code) architecture was always a pleasant feature of PIC’s.

With EMR devices, there are several new opcodes, some are general improvements and some are
intended to make C programming easier:

 ADDWFC, SBWFB, LSLF, LSRF, ARSF for Logical/Array/Lookup
 MOVLP, MOVLB provide easier and faster Paging and Banking
 BRA (signed), BRW (unsigned), CALLW provide improved +/- 256 byte relative

branching
 ADDFSR0L (signed), MOViW, MOVWi for use with the enhanced FSR0L Indirect

Addressing
 RESET is a real opcode now, no more waiting for WDT to timeout & provide a reset

Page 6

Interrupts

Critical MPU registers are now auto-saved & restored by Interrupt, so there is no need to
push/pop these critical registers during an Interrupt Service Routine (ISR). The RETFIE opcode
at the end of the ISR now auto-restores (‘pops’) these critical registers.
These critical registers, as well as the stack and some debug registers are conveniently grouped
together on Bank 31.

Figure 1: Registers auto-saved and auto-restored on Interrupt

Paging

Mid-range PIC flash memory has always been broken down to 2k ‘page’ boundaries, as the 14-
bit word limitation AND the opcode ‘CALL’ (3-bits) meant only 11 bits were left for the CALL
address. Hence flash memory code must be viewed to be segmented into 2k ‘page’ boundaries,
as this is the address limit of CALLs.

It is recommended to use PAGESEL pseudo-code for all paging, as this makes code fully
transportable between MR and EMR devices and allows EMR devices to use the new and faster
'movlp' opcode for paging.

Page 7

Banking

It is recommended to use BANKSEL pseudo-code for all register selection, as this makes code
fully transportable between MR and EMR devices and allows EMR devices to use the faster
'movlb' BSR code for all banking.

PIC’s use the Harvard architecture (i.e. separate address space for RAM data and flash program
memory), and the RAM and control registers are arranged into 128 byte ‘Banks’. With EMR
architecture, there are many more Banks in order to accommodate the extra General Purpose
RAM (GPR) and the extra control Special Function Registers (SFR’s) and still maintain the 128-
byte Bank limit.

The multitude of SFR’s are now spread over a large range of Banks, but this is not a concern if
you use the BANKSEL command when addressing the register, as the assembler will
automatically select the correct Bank for you - just remember to revert to Bank 0 when done!

The last Bank (Bank 31) contains critical ISR registers & debug registers available for use.

As usual, the last 16 bytes of SRAM is common to all Banks, but now that idea has been
extended so that the first 12 MPU Core Special Function Registers (SFR’s) such as the PCL,
INDFx, FSRx, Status and W Register are now also common to all 32 Banks.

Figure 2: EMR Banks structure with shared SFR’s and RAM

Page 8

Indirect Addressing

With EMR, there are two full 16-bit indirect registers which can access ALL memory, SRAM
and flash. (ISR0 points to the 16-bit address in FSRH0/FSRL0, and ISR1 points to the 16-bit
address in FSRH1/FSRL1).

These new 16bit FSR registers are located in the “common first 12 bytes of SFR’s’ (i.e. common
to all Banks) so they can be quickly accessed anytime.

The really cool thing about EMR indirect addressing is that the 16 bit FSR registers now allow
access to virtually ALL memory of the PIC, SRAM and Flash! It’s almost as though the Harvard
architecture has been converted into Von Neumann architecture. The EMR FSR register sees
ALL memory in the PIC as a single 32k virtual address space, and even the Banked general
purpose RAM is mapped into the this space as a contiguous (linear) block of data memory.

Banks appear in the bottom half of the memory map (including new linear mapping of ‘virtual’
banks), and the flash code memory appear in the top half.

Figure 3: The two new 16 bit FSR registers and associated INDFx registers

Page 9

Figure 4: LHS- New FSR ‘virtual’ address, RHS- Harvard memory addresses

Figure 5: LHS- Linear GPR virtual address space

Page 10

Note that the legacy STATUS-IRP bit - which was used in the 16f88 for accessing data memory
greater than 256bytes (i.e. anything greater than Bank0/1 access) - is no longer present in EMR
devices.

With the EMR devices, the fastest way to change your working bank is to manually update the
FSR(H) register, however you can also use BANKiSEL (BANKiSEL is transportable from MR
to newer EMR devices, but note it doesn’t preserve the W register).

LATx Register

A new Latch register added to all I/O ports avoids the previous potential problem of [reading
then] writing the INPUT PIN values into the PORT write latches.

With standard MR PICs, it was possible to write a value to a port, then do another bit test (or bit
change) to the same port, only to find out that the resultant port state ends up quite unlike what
you expected. This is because of the “read-modify-write” problem, whereby the PIC always
reads the actual state of the physical pins before modifying and then writing back the new value
to the port.

Say you wrote $FF to the port, but some pins were slow to change state (say, because of a large
capacitive load), then if you read it back immediately it might only take a microsecond, but that
could be too fast for all capacitive loads to charge up to the $FF state you requested. So it was
possible for this problem to pop up at unexpected times, even when you thought you were
manipulating an unrelated pin on that Port!

So all I/O Ports now have a LATCH register. A write to LATx register instead of the PORTx
register eliminates any potential read-modify-write issue. But you can also still read the Port pins
directly if you so desire.

ADC

EMR devices often have more AD channels available, although there is still just one central
ADC module to do the conversions. There are also new ADC options, like an internal Fixed
Voltage Reference (FVR) option & a Temperature sensor.

As a result, the ADC control registers and Analog Select registers (ANSEL) are arranged
somewhat differently, but the ADC initialization sequence has not altered.

Weak Pull-Ups

16f88 had an optional WPU only port B (only) when it was configured as an input.

With the 16f1847, each pin on Port B has an individually configurable internal weak pull-up
(with global control). Port RA5 also has a WPU option.

Page 11

Clock

EMR device clocks are often faster, and may have different prescalers or connection methods to
the internal timers. So any code that uses the internal clock for Timers, ADC and delays may
also need some adjustment.

WDT

The 16f1877 WDT now has a new prescaler for much longer timeouts (up to 256 Seconds!), plus
the Config Word now has 4 options for WDT operation, not just two. These are:

_WDTE_OFF EQU H'3FE7’ ; WDT disabled
_WDTE_SWDTEN EQU H'3FEF’ ; WDT controlled by the SWDTEN bit in the WDTCON register
_WDTE_NSLEEP EQU H'3FF7’ ; WDT enabled while running and disabled in Sleep
_WDTE_ON EQU H'3FFF’ ; WDT enabled

Page 12

MIGRATING TO EMR ARCHITECTURE

So, this is the rough process I used to migrate my 16F88 assembly code to 16F1847 EMR
format.

 It takes a bit of patience, but if you value your old code the good news it is worth it, and,
surprisingly, I converted several thousand lines of 16F88 source code (about 3k words) in just a
couple of weekends. Strangely I found the process quite meditative, a bit like doing a moderate
Sudoku puzzle…and I solved it!

 The biggest scare I had was my initial problem of no display, but that was unrelated to the
migrations, it turned out to be (embarrassingly) my incorrect voltage applied to the LCD contrast
pin on a new 16x2 LCD.

 Because I migrated my older code in logical steps (like suggested below), surprisingly few bugs
surfaced during the process.

I used frequently used the Ctrl-H (find and replace) command within MPLAB for most code
modification, and this made searching for and replacing redundant legacy code quite easy,
despite it having 4000 lines! After each major change, I incremented the ASM filename and
recompiled and retested the code in my hardware. In total, only about a dozen or so recompiles
were necessary in the end.

Below is the outline and approximate sequence I used for my migration from 16f88 to 16f1847.

Processor Definition & Config Bits

 Alter the processor definition and configuration bits (aka ‘fuses’) at the start of your code..

list P=16f1847
#include p16f1847.inc

 __CONFIG _CONFIG1, _FOSC_INTOSC & _WDTE_SWDTEN & _PWRTE_ON & _MCLRE_ON & _CP_OFF &
_CPD_OFF & _BOREN_OFF & _CLKOUTEN_OFF & _IESO_OFF & _FCMEN_OFF

 __CONFIG _CONFIG2, _WRT_OFF & _PLLEN_OFF & _STVREN_OFF & _BORV_HI & _LVP_OFF

…or you can do it with MPLAB IDE menu after specifying your device [Configure>Select
Device] then [Configure > Configuration Bits].

Watchdog Timer

 The WDT now has a new prescaler for much longer timeouts, plus the Config Word now has 4
options for WDT operation. I recommend you disable the WDT until you are satisfied all other
code alterations are implemented and are fully working.

CONFIG word declaration for the WDT:

_WDTE_OFF EQU H'3FE7’ ; WDT disabled
_WDTE_SWDTEN EQU H'3FEF’ ; WDT controlled by the SWDTEN bit in the WDTCON register

Page 13

_WDTE_NSLEEP EQU H'3FF7’ ; WDT enabled while running and disabled in Sleep
_WDTE_ON EQU H'3FFF’ ; WDT enabled

Main code initialization of WDT:

banksel WDTCON
movlw b'00010110' ; S/W WDT (31.5khz INTRC clk/65556) = 2.09S timeout
movwf WDTCON ; WDT prescaler (WDT enabled in config word)
bsf WDTCON,0 ; SW enable WDT

Clock

The 16f1847 can now run as high as 32MHz, but I recommend you stick to the old 16f88 speed
until safe. Any code that relies on the internal clock (eg Timers, ADC and delays) may also be
impacted and may need adjustment.

 Refer to the 16f1847 datasheet to initialise the clock registers.

banksel OSCCON ; Bank1
movlw b'01110010' ; 8MHz, running from INTRC
movwf OSCCON ; set clock
movlw b'00000000'
movwf OSCTUNE

Ports, LATx and WPU’s

With the new LATx latch register is present on all I/O ports, I recommend you read and write to
LATx (and not directly to the Port) unless you are sure it’s safe from the read-modify-write issue
described earlier.

The initialisation of the Ports and the TRIS (tristate, or data direction) register are unchanged.

With the 16f1847, each pin on Port B now has an individually configurable internal weak pull-
up, as does Port RA5. Take this into consideration when looking at your hardware design.

; set portA & B data direction & pullups
banksel LATA ;
clrf LATA ;Data Latch PORTA
clrf LATB ;Data Latch PORTB

banksel WPUA
clrf WPUA ; disable all WPU (not needed on A/D channels)
clrf WPUB ; disable all WPU (not needed on Act-Hi SW input RB2)

; set port data direction, where (0)=outputs and (1)=inputs
banksel TRISA ; Bank1 - DataDir register
movlw b'00111111' ; <7-6> outputs, all else inputs
movwf TRISA
movlw b'00000100' ; SW_IN<2>, all else outputs
movwf TRISB

Page 14

ADC

EMR device ADC’s have new options, like an internal Fixed Voltage Reference (FVR) option &
a Temperature sensor. The FVR is a welcome improvement to consider instead of using Vdd as
the +ve ADC voltage reference. For example, if your old hardware design used a78L05 as the
ADC +ve reference, you could have a +/-4% error on all ADC readings (the 78L05 was typically
5V +/-0.2V at 25C!).

As there are five extra ADC channels on the 16f1847 (12 in total) and the ADC control registers
are a bit different, there are now two analog initialization registers (ANSELA/B) and two ADC
control registers (ADCCON0/1) to initialise. For example…

 ; ...
banksel FVRCON ; setup FVR as an optional Vdd +ve reference
movlw b'10000011' ; set FVR ENabled & ADC buffer gain x4
movwf FVRCON

; ...

banksel ANSELA ; Bank3
movlw b'00011111' ; setup PortA <4:0> as analog inputs
movwf ANSELA
clrf ANSELB ; (portB currently not used for any analogue)

banksel ADCON0 ; Bank1
movlw b'00000000' ; default is ChanSel 000 (AN0) & set ADC to off
movwf ADCON0
movlw b'11010000' ; right justified result,(Fosc/16) = 2uS AD clk, AD Ref = Vss-Vdd

; movlw b'11010011' ; as above, but with option for AD Ref = Vss-Vfvr (4.096v)
movwf ADCON1
bsf ADCON0,ADON ; A/D converter enabled!

Banks and Page references

Remove any Bank0/1/2/3 DEFinitions (or Bankx references) & replace with BANKSEL
[registername] statements.

Remove any Page0/1 DEFinitions (or Pagex references) & replace with PAGESEL [label]
statements.

Initialisation of misc. CONFIG registers

Depending on your application, you may have some various timers or interrupt registers to setup.
Just compare the old and new datasheets to check if anything has changed.

And if your original source code specifies the setup of explicit bits in config registers, it’s more
future-proof if you recode those to use the generic Microchip labels instead, as the assembler will
substitute the correct bit-field should you swap devices.

;This method of coding may work on your old processor....
bank0
bsf ADCON0,0 ; A/D converter enabled

Page 15

;…but this is a more transportable way to write the same code….
banksel ADCON0
bsf ADCON0, ADCON ; A/D converter enabled

Macros

Check Macros for any old Bank or Page switching code, and ensure it only uses Banksel and
Pagesel commands as described above.
You should also consider creating new Macros if the new frequent use of Banksel [register]
command makes your main code messy and harder to read.

For example, one piece of my main code spent a lot of time altering a PWM register. Creating
new macro definitions of read_PWM, write_PWM , inc_PWM etc meant I still did all the
necessary new Banksel swaps, but my new main code stayed clean and easier to read.

read_PWM macro ; Example in removing messy bank swaps
banksel CCPR1L ; Bank5
movf CCPR1L,w ; load W from PWM
banksel d'0' ; Bank0
endm

Interrupt Service Routines (ISR’s)

Critical registers are now auto-saved in BANK32 and are auto-restored on RETFIE, so ISR’s no
longer need any code to push/pop the critical registers.

But if you are concerned, leaving the old push / pop code as it was won’t hurt anything either.

Keep in mind that deleting push/pop code not only speeds up the ISR code, it can also mean that
by deleting any old ISR RAM variables in the valuable $70-$7f shared RAM space gives you the
option of reusing that valuable space. (ie you can repurpose that RAM space for actions that
would otherwise require a lot of Bank switching to manipulate).

Indirect addressing considerations

With the replacement of the old INDF register with the new 16-bit INDFx registers, it opens all
sorts of possibilities for code improvement. In my case, this gave me the opportunity to simplify
my LCD string display code and place my LCD strings lookup table on any page I wanted. Plus
I could also remove the legacy RETLW code (as was often used in past lookup tables) allowing
the table to only comprise clean strings of text.

; ***************************************
STRINGOUT: ; send string to LCD

; ***************************************
; This code intended for extended mid-range devices. The string table can be placed on any page!

Page 16

; An ORG declaration & STR_TABLE: label must be placed at start of string table (16 x 16 max)
; Enter with W = OFFSET from TABLE_BASE (the start of the required 16chr string block)
; NOTE each string must start at $xx00 and be 16characters long (or be terminated by $00)

movwf FSR1L ; save LO byte OFFSET for table read
; movlw 0x0f ; (optional way to set HI byte for table @ $0F00)

movlw HIGH STR_TABLE ; get HI byte of table start address
movwf FSR1H ; save as HI byte for table read

STROUT_LOOP
movf INDF1,w ; get a character
btfsc ZEROBIT ; is it a string terminator ($00)?
goto STROUT_END ; yes, so exit early
call LCD_CHR ; else display it
incf FSR1L ; inc string pointer
movf FSR1L,w ; get updated string ptr
andlw b'00001111' ; chk LO nibble, has 16 char limit rolled over?
btfss ZEROBIT ; if ZERO, then all done, exit
goto STROUT_LOOP ; else loop & get next character

STROUT_END
return

; ***************************************
; STRING LOOKUP TABLE
; ***************************************
STR_TABLE:

org 0x0f00
STRING_00: dt "This is a string" ; string 1
STRING_10: dt "of 16 characters" ; string 2
;…and so on up to 16 text strings

STRING_E0: dt "This 2nd last " ; string 15
STRING_F0: dt "This is the last" ; string 16
STR_TABLE_END:
; ***************************************

REFERENCES:

Microchip: Enhanced Mid-Range PIC MCU Architectural Overview
https://microchipdeveloper.com/8bit:emr-architecture

Microchip WebSeminar: Introducing the Enhanced Mid-Range Architecture
https://www.microchip.com/stellent/groups/sitecomm_sg/documents/devicedoc/en542713.pdf

Microchip PIC1xF1xxxx Software Migration
Microchip Archive, Document Number: DS41375A.pdf

Page 17

https://www.microchip.com/stellent/groups/sitecomm_sg/documents/devicedoc/en542713.pdf
https://microchipdeveloper.com/8bit:emr-architecture

	MIGRATING FROM THE PIC16F88
	THE VANISHING PIC16F88?
	MY BACKGROUND
	ASSUMPTIONS
	ENTER MPLAB-X
	BACK TO THE FUTURE – MPLAB IDE
	16F88 SUBSTITUTE
	SO WHAT IS EMR ARCHITECTURE?
	Opcodes
	Interrupts
	Paging
	Banking
	Indirect Addressing
	LATx Register
	ADC
	Weak Pull-Ups
	Clock
	WDT

	MIGRATING TO EMR ARCHITECTURE
	Processor Definition & Config Bits
	Watchdog Timer
	Clock
	Ports, LATx and WPU’s
	ADC
	Banks and Page references
	Initialisation of misc. CONFIG registers
	Macros
	Interrupt Service Routines (ISR’s)
	Indirect addressing considerations

