Supplement A

Test Results of the three phase sine wave generator

TP1 - yellow
TP4 - cyan $\mathrm{V}_{\mathrm{m}} \sin \left(\omega \mathrm{t}+360^{\circ}\right)$

Theory and Analysis

Phase Shifter

Figure 1

TP1-yellow
TP3 - cyan $\mathrm{V}_{\mathrm{m}} \sin \left(\omega \mathrm{t}+240^{\circ}\right)$

TP1 \& TP4
Lissasjous plot

This is a basic inverting op-amp. For a sine wave signal output leads input by 180°
Note: Input capacitor has low impedance at the frequencies considered and is ignored here.

Figure 2

Analysis with $\mathrm{R} / / \mathrm{C}$ feedback impedance Z

$$
\begin{array}{r}
Z=\frac{\frac{R_{1}}{j \omega C}}{R_{1}+\frac{1}{j \omega C}}=\frac{R_{1}}{j \omega R_{1} C+1} \\
X_{C}=\frac{1}{\varpi C}
\end{array}
$$

$Z=\frac{R_{1}}{j \frac{R_{1}}{X_{c}}+1}=\frac{R_{1}\left(1-j \frac{R_{1}}{X_{c}}\right)}{1+\frac{R_{1}{ }^{2}}{X_{c}{ }^{2}}}$
Since we are looking for 60 degree phase shift and $\tan 60^{\circ}=\sqrt{3}$, let $\frac{R_{1}}{X_{c}}=\sqrt{3}$
Then:
$X_{C}=\frac{R_{1}}{\sqrt{3}}$, substituting this into the equation for Z above:
$Z=\frac{R_{1}(1-j \sqrt{3})}{4}=\frac{R_{1}}{2} \underline{/-60^{\circ}}$
Gain $\mathrm{A}_{\mathrm{v}}=\left(\mathrm{Z} / \mathrm{R}_{2}\right)$
Phase shifter needs unity gain therefore $\mathrm{R}_{1}=2 \mathrm{R}_{2}$
$\mathrm{A}_{\mathrm{V}}=1 /-60^{\circ}$
Phase of the output voltage is

$$
180^{\circ}-60^{\circ}=120^{\circ}
$$

$$
V_{\text {in }}=V_{\text {out }}
$$

Sine Wave Oscillator

Once the operating frequency for the three phase generator has been specified or calculated, sine wave source can be designed. Basic configuration is shown below: Figure 3

$$
\begin{gathered}
\text { Frequency of oscillation } \\
\omega=\sqrt{\frac{1}{R_{1} R_{2} C_{1} C_{2}}} \mathrm{r} / \mathrm{s} \quad f=\frac{\omega}{2 \pi} \quad \text { Hertz } \\
\begin{array}{c}
\text { Condition for oscillation } \\
R_{2} / R_{1}+C_{1} / C_{2}=1
\end{array}
\end{gathered}
$$

This is one of three oscillators described in October 2019 issue of Silicon Chip. For further details see free PDF file at: siliconchip.com.au/Shop/6/5073

Phase Shift Element

A project I have in mind needs a three phase sine wave source with the frequency in the range of 10 to 15 kHz . I picked a standard capacitor value of 10 nF . Some mathematics showed that a $20 \mathrm{k} \Omega$ resistor would get me in the range, thus:

$$
\begin{aligned}
& \text { resistor } \mathrm{R}_{1}=20 \mathrm{k} \Omega \\
& \phi=\tan ^{-1} \frac{R_{1}}{X_{C}} \\
& \text { phase shift } \phi=60^{\circ}, \tan \phi=\sqrt{3} \\
& X_{C}=R_{1} / \sqrt{3}=11547 \Omega \\
& \text { Also } X_{C}=1 / \omega C=1 / 2 \pi f C \\
& f=1 /\left(2 \pi * 11547 * 10 * 10^{-9}\right)=13783 \mathrm{~Hz}
\end{aligned}
$$

For unity gain $\mathrm{R}_{2}=10 \mathrm{k} \Omega \quad\left(\mathrm{R}_{1}=2 * \mathrm{R}_{2}\right)$

Sine Wave Oscillator

This oscillator (see Figure 3) is used as the sine wave source for the three phase generator.
Operating frequency $=13783 \mathrm{~Hz}$ as defined by the phase shifter
Selecting C_{1} as 1 nF and C_{2} as 2 nF requires R_{1} to be $11.55 \mathrm{k} \Omega$ and R_{2} to be $5.77 \mathrm{k} \Omega$ Actual circuit used:

Sine wave oscillator
Standard resistor values were used. Measured frequency is 13.647 kHz .

Supplement B

Phase Shift Fundamentals

Analysis of Resistor and Capacitor Parallel Circuit

Figure 1

$$
\begin{gathered}
v=V_{m} \sin \omega t \\
i_{T}=i_{R}+i_{C}=\frac{v}{R}+C \frac{d v}{d t}=\frac{V_{m}}{R} \sin \omega t+\omega C V_{m} \\
X_{C}=\frac{1}{\varpi C}
\end{gathered}
$$

Then $i_{T}=\sqrt{(1 / R)^{2}+\left(1 / X_{C}\right)^{2}} * V_{m} \sin \left(\omega t+\tan ^{-1}\left(R / X_{C}\right)\right.$
The current leads the voltage by the angle $\phi=\tan ^{-1}\left(R / X_{C}\right)$
Considering the special case where $\frac{R}{X_{C}}=\sqrt{3},\left(\tan 60^{\circ}=\sqrt{3}\right)$
$\mathrm{X}_{\mathrm{C}}=\mathrm{R} / \sqrt{3}$, then the term under the square root sign:
$\sqrt{(1 / R)^{2}+\left(1 / X_{C}\right)^{2}}=\sqrt{(1 / R)^{2}+(\sqrt{3} / R)^{2}}=2 / \mathrm{R}$
$i_{T}=\frac{2 V_{m}}{R} \sin \left(\omega t+\tan ^{-1} \frac{R}{X_{C}}\right)=\frac{2 V_{m}}{R} \sin \left(\omega t+60^{\circ}\right)$

Operational amplifier feedback current

Norton operational amplifier is a current driven device and the generated output voltage of the amplifier will cause the following condition to be satisfied:

Input current = - Feedback current (in phase and magnitude)
In the circuit below the input voltage to the RC feedback circuit is the amplifier output voltage i.e.

$$
v=V_{O} \sin \left(\omega t+180-\tan ^{-1} \frac{R_{1}}{X_{C}}\right)
$$

Current in the RC circuit leads the voltage by $\tan ^{-1} \frac{R_{1}}{X_{C}}$

$i_{i n}=\frac{V_{m}}{R_{2}}$
$i_{i n}=i_{T} \quad$ (op-amp function)
$i_{R 1}=\frac{v_{\text {out }}}{R_{1}}$, also from the phasor diagram:
$i_{R 1}=i_{T} \cos 60=0.5 i_{T}$
if
$R_{1}=2 R_{2}$
then
$V_{\text {in }}=V_{\text {out }}$
$i_{c}=\frac{v_{o}}{X_{c}}=\sin 60$
$\frac{i_{R 1}}{i_{c}}=\frac{R_{1}}{X_{c}}=\frac{\cos 60}{\sin 60}=\tan 60=\sqrt{3}$

