Silicon ChipI3C: Coming soon to an IC near you - October 2022 SILICON CHIP
  1. Outer Front Cover
  2. Contents
  3. Publisher's Letter: I3C: Coming soon to an IC near you
  4. Feature: Display Technologies, Part 2 by Dr David Maddison
  5. Project: 30V 2A Bench Supply, Part 1 by John Clarke
  6. Feature: New PICs & AVRs from Microchip by Tim Blythman
  7. Project: PIC & AVR Breakout Boards by Tim Blythman
  8. Subscriptions
  9. Feature: Buck/Boost Battery Charging by Tim Blythman
  10. Project: Multi-Stage Buck/Boost Charger by Tim Blythman
  11. Project: Automatic Train Controller by Les Kerr
  12. Serviceman's Log: Fixing feline follies by Dave Thompson
  13. Feature: Mouser Q & A by Nicholas Vinen & Mark Burr-Lonnon
  14. Project: WiFi Programmable DC Load, Part 2 by Richard Palmer
  15. PartShop
  16. Vintage Radio: STC model 510 portable by Associate Professor Graham Parslow
  17. Market Centre
  18. Advertising Index
  19. Notes & Errata: History of Op Amps, August 2021; AVO Valve Testers, August 2022; iSoundbar, August 2022
  20. Outer Back Cover

This is only a preview of the October 2022 issue of Silicon Chip.

You can view 44 of the 112 pages in the full issue, including the advertisments.

For full access, purchase the issue for $10.00 or subscribe for access to the latest issues.

Articles in this series:
  • Display Technologies, Part 1 (September 2022)
  • Display Technologies, Part 1 (September 2022)
  • Display Technologies, Part 2 (October 2022)
  • Display Technologies, Part 2 (October 2022)
Items relevant to "30V 2A Bench Supply, Part 1":
  • 30V 2A Bench Supply front panel control PCB [04105222] (AUD $2.50)
  • 30V 2A Bench Supply main PCB [04105221] (AUD $5.00)
  • INA282AIDR shunt monitor IC and 20mΩ 1W shunt resistor for 30V 2A Bench Supply (Component, AUD $10.00)
  • 30V 2A Bench Supply PCB patterns (PDF download) [04105221/2] (Free)
  • 30V 2A Bench Supply front panel artwork (PDF download) (Free)
Articles in this series:
  • 30V 2A Bench Supply, Part 1 (October 2022)
  • 30V 2A Bench Supply, Part 1 (October 2022)
  • 30V 2A Bench Supply, Part 2 (November 2022)
  • 30V 2A Bench Supply, Part 2 (November 2022)
Items relevant to "PIC & AVR Breakout Boards":
  • PIC16F18xxx DIP Breakout PCB [24110222] (AUD $2.50)
  • PIC16F18xxx SOIC Breakout PCB [24110225] (AUD $2.50)
  • AVRxxDD32 TQFP Breakout PCB [24110223] (AUD $2.50)
  • PIC & AVR Breakout Board PCB patterns (PDF download) [24110222,3,5] (Free)
Items relevant to "Buck/Boost Battery Charging":
  • Complete kit for the High Power Buck-Boost LED Driver (Component, AUD $80.00)
Items relevant to "Multi-Stage Buck/Boost Charger":
  • Buck/Boost Charger Adaptor PCB [14108221] (AUD $5.00)
  • PIC16F1459-I/SO programmed for the Buck/Boost Battery Charger Adaptor (1410822A.HEX) (Programmed Microcontroller, AUD $15.00)
  • 1.3-inch blue OLED with 4-pin I²C interface (Component, AUD $15.00)
  • 1.3-inch white OLED with 4-pin I²C interface (Component, AUD $15.00)
  • Complete kit for the Buck/Boost Charger Adaptor (Component, AUD $40.00)
  • Complete kit for the High Power Buck-Boost LED Driver (Component, AUD $80.00)
  • Laser-cut clear acrylic front panel for Buck/Boost Charge Adaptor (PCB, AUD $2.50)
  • Buck/Boost Charger Adaptor software & laser cutting files (1410822A.HEX) (Free)
  • Buck/Boost Charger Adaptor PCB pattern (PDF download) (14108221) (Free)
Items relevant to "Automatic Train Controller":
  • Automatic Train Control PCB [09109221] (AUD $2.50)
  • Chuff Sound PCB [09109222] (AUD $2.50)
  • PIC16F1455-I/P programmed for the Automatic Train Controller (0910922A.HEX) (Programmed Microcontroller, AUD $10.00)
  • PIC12F675-I/P programmed for the Chuff Sound module (0910922C.HEX) (Programmed Microcontroller, AUD $10.00)
  • ISD1820-based voice recording and playback module (Component, AUD $7.50)
  • Firmware for the Automatic Train Controller (0910922A/C.HEX) (Software, Free)
  • Auto Train Control and Chuff Sound Generator PCB patterns (PDF download) [09109221/2] (Free)
Items relevant to "WiFi Programmable DC Load, Part 2":
  • WiFi-Controlled DC Electronic Load main PCB [04108221] (AUD $7.50)
  • WiFi-Controlled DC Electronic Load daughter PCB [04108222] (AUD $5.00)
  • WiFi-Controlled DC Electronic Load control PCB [18104212] (AUD $10.00)
  • 3.5-inch TFT Touchscreen LCD module with SD card socket (Component, AUD $35.00)
  • Laser-cut acrylic fan mounting-side panel for the WiFi DC Electronic Load (PCB, AUD $7.50)
  • WiFi-Controlled DC Electronic Load laser-cut front panel (2mm matte black acrylic) (PCB, AUD $10.00)
  • Software and laser-cutting files for the WiFi DC Electronic Load (Free)
  • WiFi-Controlled DC Electronic Load PCB patterns (PDF download) [04108221/2, 18104212] (Free)
  • Front panel decal and cutting diagrams for the WiFi DC Electronic Load (Panel Artwork, Free)
Articles in this series:
  • WiFi Programmable DC Load, Part 1 (September 2022)
  • WiFi Programmable DC Load, Part 1 (September 2022)
  • WiFi Programmable DC Load, Part 2 (October 2022)
  • WiFi Programmable DC Load, Part 2 (October 2022)

Purchase a printed copy of this issue for $11.50.

SILICON SILIC CHIP www.siliconchip.com.au Publisher/Editor Nicholas Vinen Technical Editor John Clarke – B.E.(Elec.) Technical Staff Jim Rowe – B.A., B.Sc. Bao Smith – B.Sc. Tim Blythman – B.E., B.Sc. Advertising Enquiries (02) 9939 3295 adverts<at>siliconchip.com.au Regular Contributors Allan Linton-Smith Dave Thompson David Maddison – B.App.Sc. (Hons 1), PhD, Grad.Dip.Entr.Innov. Geoff Graham Associate Professor Graham Parslow Dr Hugo Holden – B.H.B, MB.ChB., FRANZCO Ian Batty – M.Ed. Phil Prosser – B.Sc., B.E.(Elec.) Cartoonist Louis Decrevel loueee.com Founding Editor (retired) Leo Simpson – B.Bus., FAICD Silicon Chip is published 12 times a year by Silicon Chip Publications Pty Ltd. ACN 626 922 870. ABN 20 880 526 923. All material is copyright ©. No part of this publication may be reproduced without the written consent of the publisher. Subscription rates (Australia only) 6 issues (6 months): $65 12 issues (1 year): $120 24 issues (2 years): $230 Online subscription (Worldwide) 6 issues (6 months): $50 12 issues (1 year): $95 24 issues (2 years): $185 For overseas rates, see our website or email silicon<at>siliconchip.com.au I3C: coming soon to an IC near you If you’ve worked with digital chips, especially microcontrollers, you will be familiar with the major serial buses, including I2C and SPI. They are very common ways of controlling external chips and transferring data between them. Many of our projects that use micros include one or both. I2C has the advantage of requiring fewer wires (two plus a ground versus 3-4 for SPI), multiple chips can be on the same I2C bus as they have unique addresses, and chips running off different voltages (eg, 3.3V & 5V) can be on the same bus. However, I2C is quite a bit slower than SPI (typically around 400kbps or 1Mbps compared to, say, 20Mbps), so it’s mainly used for sending commands and small amounts of data. It turns out that a consortium including Intel, ARM, ST Micro, TI, Samsung and Nokia released the specifications for a new bus called I3C in 2017. It has some of the best features of both systems. Oddly, it hasn’t gained widespread adoption yet, and I have only just heard about it. One possible reason is that it is a somewhat ‘closed’ standard, as you have to be a ‘member’ to get the full specification; unlike I2C where it is a free download. I think that is a poor move. If they want people to actually use this and for it to become standard, they should make it fully public. DDR5 computer memory, which is coming into widespread use now, apparently makes use of I3C. I haven’t looked into it in detail; I assume it is the bus used for communications between the onboard memory controller and the computer CPU. I3C is somewhat backwards compatible with I2C and retains pretty much all of its advantages, while increasing the bus speed to the point that it’s almost as fast as SPI. SPI retains an advantage: each pair of devices has a dedicated communications channel, and other devices cannot reduce the bandwidth or interfere with timing of data transfers or commands. But there are many applications where I3C will be good enough, and I think SPI will only be used in specific situations once I3C is more widely used. Some microcontrollers are now available with support for I3C, such as the PIC18-Q20 series, and sensors supporting I3C are ‘coming soon’ from major manufacturers. For more information, see siliconchip.au/link/abgm and https://w.wiki/5fgX Please keep your e-mail address up to date Editorial office: Unit 1 (up ramp), 234 Harbord Rd, Brookvale, NSW 2100. Postal address: PO Box 139, Collaroy Beach, NSW 2097. Phone: (02) 9939 3295. ISSN: 1030-2662 Printing and Distribution: With the cost of postage constantly increasing, it has been very helpful for us to be able to e-mail subscribers when their subscription is about to expire. It’s especially important for people with online-only subscriptions as we might not even have their address for sending a renewal reminder letter. It’s frustrating when those reminders bounce because the subscriber has not told us about a change in their e-mail address. If you change your e-mail address, please update your account to reflect that. If you don’t know how to do that, let us know via phone or e-mail, and we’ll do it for you. You can recover your account if you forget your password to our website, but only if we have your current e-mail address. I advise avoiding using e-mail addresses provided by your internet service provider (ISP) or a work address. Instead, use a service like Gmail, Outlook, Yahoo!, iCloud etc. That way, if you change ISPs or jobs, your e-mail address will remain the same, and you won’t have to update it everywhere. 24-26 Lilian Fowler Pl, Marrickville 2204 by Nicholas Vinen Recommended & maximum price only. 2 Editorial Viewpoint Silicon Chip Australia's electronics magazine siliconchip.com.au