Silicon ChipAdvertising Index - January 2021 SILICON CHIP
  1. Outer Front Cover
  2. Contents
  3. Publisher's Letter: More articles than space - a good problem to have!
  4. Feature: Automotive Electronics, Part 2 by Dr David Maddison
  5. Project: AM/FM/SW Single-Chip Digital Radio by Charles Kosina
  6. Review: Altium 365 and Altium Designer 21 by Tim Blythman
  7. Project: MiniHeart: A Miniature Heartbeat Simulator by John Clarke
  8. Feature: How to use the MPLAB X Development Environment by Tim Blythman
  9. Serviceman's Log: One good turn deserves another by Dave Thompson
  10. Project: The Bass Block Subwoofer by Nicholas Dunand
  11. Project: Busy Loo Indicator by John Chappell
  12. Feature: AVR128DA48 and Curiosity Nano Evaluation Board by Tim Blythman
  13. Product Showcase
  14. Vintage Radio: 1963 Philips Musicmaker MM1 mantel radio by Associate Professor Graham Parslow
  15. PartShop
  16. Feature: El Cheapo Modules: Mini Digital AC Panel Meters by Jim Rowe
  17. Market Centre
  18. Advertising Index
  19. Notes & Errata: Balanced Input Attenuator for the USB SuperCodec, November-December 2020; Two LED Christmas Stars, November 2020; D1 Mini LCD BackPack, October 2020
  20. Outer Back Cover

This is only a preview of the January 2021 issue of Silicon Chip.

You can view 42 of the 112 pages in the full issue, including the advertisments.

For full access, purchase the issue for $10.00 or subscribe for access to the latest issues.

Articles in this series:
  • Automotive Electronics, Part 1 (December 2020)
  • Automotive Electronics, Part 1 (December 2020)
  • Automotive Electronics, Part 2 (January 2021)
  • Automotive Electronics, Part 2 (January 2021)
Items relevant to "AM/FM/SW Single-Chip Digital Radio":
  • AM/FM/SW Single-Chip Digital Radio PCB [CSE200902A] (AUD $10.00)
  • Pulse-type rotary encoder with pushbutton and 18t spline shaft (Component, AUD $3.00)
  • PCB-mount right-angle SMA socket (Component, AUD $3.00)
  • 16x2 Alphanumeric serial (I²C) LCD module with blue backlight (Component, AUD $12.50)
  • Firmware for the AM/FM/SW Single-Chip Digital Radio (Software, Free)
  • AM/FM/SW Single-Chip Digital Radio PCB pattern (PDF download) [CSE200902A] (Free)
  • Cutting diagrams and front panel artwork for the AM/FM/SW Single-Chip Digital Radio (PDF download) (Free)
Items relevant to "MiniHeart: A Miniature Heartbeat Simulator":
  • MiniHeart PCB [01109201] (AUD $5.00)
  • PIC12F617-I/P programmed for the MiniHeart [0110920A.HEX] (Programmed Microcontroller, AUD $10.00)
  • MiniHeart SMD parts (Component, AUD $7.50)
  • Firmware for the MiniHeart [01109201A.hex] (Software, Free)
  • MiniHeart PCB pattern (PDF download) [01109201] (Free)
  • Cutting diagrams and front panel artwork for the MiniHeart (PDF download) (Free)
Items relevant to "The Bass Block Subwoofer":
  • Cutting diagrams for the Bass Block (PDF download) (Panel Artwork, Free)
Items relevant to "Busy Loo Indicator":
  • Busy Loo Indicator PCB [16112201] (AUD $2.50)
  • Busy Loo Indicator PCB pattern (PDF download) [16112201] (Free)
Articles in this series:
  • El Cheapo Modules From Asia - Part 1 (October 2016)
  • El Cheapo Modules From Asia - Part 1 (October 2016)
  • El Cheapo Modules From Asia - Part 2 (December 2016)
  • El Cheapo Modules From Asia - Part 2 (December 2016)
  • El Cheapo Modules From Asia - Part 3 (January 2017)
  • El Cheapo Modules From Asia - Part 3 (January 2017)
  • El Cheapo Modules from Asia - Part 4 (February 2017)
  • El Cheapo Modules from Asia - Part 4 (February 2017)
  • El Cheapo Modules, Part 5: LCD module with I²C (March 2017)
  • El Cheapo Modules, Part 5: LCD module with I²C (March 2017)
  • El Cheapo Modules, Part 6: Direct Digital Synthesiser (April 2017)
  • El Cheapo Modules, Part 6: Direct Digital Synthesiser (April 2017)
  • El Cheapo Modules, Part 7: LED Matrix displays (June 2017)
  • El Cheapo Modules, Part 7: LED Matrix displays (June 2017)
  • El Cheapo Modules: Li-ion & LiPo Chargers (August 2017)
  • El Cheapo Modules: Li-ion & LiPo Chargers (August 2017)
  • El Cheapo modules Part 9: AD9850 DDS module (September 2017)
  • El Cheapo modules Part 9: AD9850 DDS module (September 2017)
  • El Cheapo Modules Part 10: GPS receivers (October 2017)
  • El Cheapo Modules Part 10: GPS receivers (October 2017)
  • El Cheapo Modules 11: Pressure/Temperature Sensors (December 2017)
  • El Cheapo Modules 11: Pressure/Temperature Sensors (December 2017)
  • El Cheapo Modules 12: 2.4GHz Wireless Data Modules (January 2018)
  • El Cheapo Modules 12: 2.4GHz Wireless Data Modules (January 2018)
  • El Cheapo Modules 13: sensing motion and moisture (February 2018)
  • El Cheapo Modules 13: sensing motion and moisture (February 2018)
  • El Cheapo Modules 14: Logarithmic RF Detector (March 2018)
  • El Cheapo Modules 14: Logarithmic RF Detector (March 2018)
  • El Cheapo Modules 16: 35-4400MHz frequency generator (May 2018)
  • El Cheapo Modules 16: 35-4400MHz frequency generator (May 2018)
  • El Cheapo Modules 17: 4GHz digital attenuator (June 2018)
  • El Cheapo Modules 17: 4GHz digital attenuator (June 2018)
  • El Cheapo: 500MHz frequency counter and preamp (July 2018)
  • El Cheapo: 500MHz frequency counter and preamp (July 2018)
  • El Cheapo modules Part 19 – Arduino NFC Shield (September 2018)
  • El Cheapo modules Part 19 – Arduino NFC Shield (September 2018)
  • El cheapo modules, part 20: two tiny compass modules (November 2018)
  • El cheapo modules, part 20: two tiny compass modules (November 2018)
  • El cheapo modules, part 21: stamp-sized audio player (December 2018)
  • El cheapo modules, part 21: stamp-sized audio player (December 2018)
  • El Cheapo Modules 22: Stepper Motor Drivers (February 2019)
  • El Cheapo Modules 22: Stepper Motor Drivers (February 2019)
  • El Cheapo Modules 23: Galvanic Skin Response (March 2019)
  • El Cheapo Modules 23: Galvanic Skin Response (March 2019)
  • El Cheapo Modules: Class D amplifier modules (May 2019)
  • El Cheapo Modules: Class D amplifier modules (May 2019)
  • El Cheapo Modules: Long Range (LoRa) Transceivers (June 2019)
  • El Cheapo Modules: Long Range (LoRa) Transceivers (June 2019)
  • El Cheapo Modules: AD584 Precision Voltage References (July 2019)
  • El Cheapo Modules: AD584 Precision Voltage References (July 2019)
  • Three I-O Expanders to give you more control! (November 2019)
  • Three I-O Expanders to give you more control! (November 2019)
  • El Cheapo modules: “Intelligent” 8x8 RGB LED Matrix (January 2020)
  • El Cheapo modules: “Intelligent” 8x8 RGB LED Matrix (January 2020)
  • El Cheapo modules: 8-channel USB Logic Analyser (February 2020)
  • El Cheapo modules: 8-channel USB Logic Analyser (February 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules (May 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules (May 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules, Part 2 (June 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules, Part 2 (June 2020)
  • El Cheapo Modules: Mini Digital Volt/Amp Panel Meters (December 2020)
  • El Cheapo Modules: Mini Digital Volt/Amp Panel Meters (December 2020)
  • El Cheapo Modules: Mini Digital AC Panel Meters (January 2021)
  • El Cheapo Modules: Mini Digital AC Panel Meters (January 2021)
  • El Cheapo Modules: LCR-T4 Digital Multi-Tester (February 2021)
  • El Cheapo Modules: LCR-T4 Digital Multi-Tester (February 2021)
  • El Cheapo Modules: USB-PD chargers (July 2021)
  • El Cheapo Modules: USB-PD chargers (July 2021)
  • El Cheapo Modules: USB-PD Triggers (August 2021)
  • El Cheapo Modules: USB-PD Triggers (August 2021)
  • El Cheapo Modules: 3.8GHz Digital Attenuator (October 2021)
  • El Cheapo Modules: 3.8GHz Digital Attenuator (October 2021)
  • El Cheapo Modules: 6GHz Digital Attenuator (November 2021)
  • El Cheapo Modules: 6GHz Digital Attenuator (November 2021)
  • El Cheapo Modules: 35MHz-4.4GHz Signal Generator (December 2021)
  • El Cheapo Modules: 35MHz-4.4GHz Signal Generator (December 2021)
  • El Cheapo Modules: LTDZ Spectrum Analyser (January 2022)
  • El Cheapo Modules: LTDZ Spectrum Analyser (January 2022)
  • Low-noise HF-UHF Amplifiers (February 2022)
  • Low-noise HF-UHF Amplifiers (February 2022)
  • A Gesture Recognition Module (March 2022)
  • A Gesture Recognition Module (March 2022)
  • Air Quality Sensors (May 2022)
  • Air Quality Sensors (May 2022)
  • MOS Air Quality Sensors (June 2022)
  • MOS Air Quality Sensors (June 2022)
  • PAS CO2 Air Quality Sensor (July 2022)
  • PAS CO2 Air Quality Sensor (July 2022)
  • Particulate Matter (PM) Sensors (November 2022)
  • Particulate Matter (PM) Sensors (November 2022)
  • Heart Rate Sensor Module (February 2023)
  • Heart Rate Sensor Module (February 2023)
  • UVM-30A UV Light Sensor (May 2023)
  • UVM-30A UV Light Sensor (May 2023)
  • VL6180X Rangefinding Module (July 2023)
  • VL6180X Rangefinding Module (July 2023)
  • pH Meter Module (September 2023)
  • pH Meter Module (September 2023)
  • 1.3in Monochrome OLED Display (October 2023)
  • 1.3in Monochrome OLED Display (October 2023)
  • 16-bit precision 4-input ADC (November 2023)
  • 16-bit precision 4-input ADC (November 2023)
  • 1-24V USB Power Supply (October 2024)
  • 1-24V USB Power Supply (October 2024)
  • 14-segment, 4-digit LED Display Modules (November 2024)
  • 0.91-inch OLED Screen (November 2024)
  • 0.91-inch OLED Screen (November 2024)
  • 14-segment, 4-digit LED Display Modules (November 2024)
  • The Quason VL6180X laser rangefinder module (January 2025)
  • TCS230 Colour Sensor (January 2025)
  • The Quason VL6180X laser rangefinder module (January 2025)
  • TCS230 Colour Sensor (January 2025)
  • Using Electronic Modules: 1-24V Adjustable USB Power Supply (February 2025)
  • Using Electronic Modules: 1-24V Adjustable USB Power Supply (February 2025)

Purchase a printed copy of this issue for $10.00.

• While the MJL21193/94 transistors from ON Semiconductor are recommended, they are now obsolete and difficult to get. We recommend the ON Semiconductor NJW21193/94 transistors instead. You could use MJL1302/MJL3281. As you mention, they have a higher cut off frequency. This might or might not be a problem. They may give better performance, but it’s also possible that the amplifiers could oscillate. If you find the DC fuses are blowing for no reason, try increasing the value of the 100pF 500V compensation capacitor. However, as that value is quite high, it should be OK. According to the circuit, you need seven of each type of transistor, regardless of which types you use. Power supply cable stripe polarity I use figure-8 speaker cable (eg, Jaycar WB1703) in many projects. Should the black stripe for polarity identification be used for positive or negative? I originally thought black indicates negative, but then I noticed that most plugpacks have the striped side of the wire indicating positive. Now I’m thinking that as positive is the wire I want to be identified, perhaps I should always use the black striped wire for positive. I use the wire for motors and Arduino projects, but if anyone was connecting speaker wire to the black and red terminals on a speaker box, surely the wire with the black stripe would go to the black terminal. Is there a standard for this? (J. B., Benalla, Vic) • If you have red and black wires, then usually red would be positive and black would be negative. But it’s a bit more tricky when you have a stripe. Sometimes you have a white stripe, sometimes a red stripe and sometimes a black stripe (and possibly other colours). Usually, the stripe is used to indicate positive, but that certainly is confusing when the stripe is black. Ultimately, it doesn’t matter as long as you are consistent so that there is no confusion. As you say, plugpacks tend to use the stripe for positive (usually a white stripe, though), so it would make sense to follow that convention. Probably the best solution would be to use Jaycar Cat WH3057, WH3087 or similar cable which has red and black insulation for the two wires in the cable. Flashing lights wanted for model railway I am trying to find a railway crossing flashing light kit, or at least a PCB for it. I am sure I have seen something like it in past magazine issues. I have searched your site without success. Could someone point me in the right direction? (P. C., via email) • We published a two-lamp flasher circuit (January 1998; siliconchip. com.au/Article/4748). You can download its PCB pattern from the following page: siliconchip.com.au/ Shop/10/2362 Jaycar also sells a kit for that project, Cat KJ8070. This design runs from 12V and so is suitable for 12V SC lamps. Advertising Index Altronics...............................89-92 Ampec Technologies................. 19 Dave Thompson...................... 111 Digi-Key Electronics.................... 3 Emona Instruments................. 101 Jaycar............................ IFC,53-60 Keith Rippon Kit Assembly...... 111 LD Electronics......................... 111 LEDsales................................. 111 Microchip Technology.............. IBC Mouser Electronics...................... 7 Ocean Controls......................... 39 Rohde & Schwarz.................. OBC SC Micromite BackPack............ 47 Silicon Chip Binders............... 106 Silicon Chip PDFs on USB..... 111 Silicon Chip Shop.................. 100 Silicon Chip Subscriptions....... 88 The Loudspeaker Kit.com......... 99 Tronixlabs................................ 111 Vintage Radio Repairs............ 111 Wagner Electronics..................... 5 Notes & Errata Balanced Input Attenuator for the USB SuperCodec, November-December 2020: the photo shown halfway down the lefthand column on page 71 of the December 2020 issue, showing the wiring to the power connector, is incorrect. The positive (red) wire should be shown going to the bottom-most pin in the socket, with the black (negative) wire to the top. Also, in the circuit diagram on pages 50 & 51 of the November 2020 issue, the centre (ground) pin of CON3 at upper right should only be connected to the junction of the two zener diodes, the negative end of the 100µF capacitor next to switch S1 and the negative ends of all relay coils. The junction between this ground and the other grounds in the circuit is on the main SuperCodec board. Two LED Christmas Stars, November 2020: in the parts lists on page 41, there is no such part as a 75HC595. It should read 74HC595 instead. D1 Mini LCD BackPack with WiFi, October 2020: in the circuit diagram (Fig.1), the connections to pins 7 & 8 on the LCD module via CON1 are swapped. The drain of Q1 should go to pin 8 (LED) while pin 7 is the display SCK line and also connects to pin 10 on the LCD module and on to the D5 pin of MOD1. The February 2021 issue is due on sale in newsagents by Thursday, January 28th. Expect postal delivery of subscription copies in Australia between January 27th and February 12th. 112 Silicon Chip Australia’s electronics magazine siliconchip.com.au