Silicon ChipProductivity Commission report on the Right to Repair - August 2021 SILICON CHIP
  1. Outer Front Cover
  2. Contents
  3. Publisher's Letter: Productivity Commission report on the Right to Repair
  4. Feature: Advanced Medical & Biometric Imaging – Part 1 by Dr David Maddison
  5. Project: Second Generation Colour Maximite 2 – Part 1 by Geoff Graham & Peter Mather
  6. Feature: Automated PCB Assembly for Home Constructors by Geoff Graham
  7. Feature: The History of Op Amps by Roderick Wall & Nicholas Vinen
  8. Project: Nano Pong using an 8-pin PIC by Tim Blythman
  9. Serviceman's Log: Rocking Raucous Retro Roland Repair by Dave Thompson
  10. Project: Multi-Purpose Battery Manager by Tim Blythman
  11. Product Showcase
  12. Feature: El Cheapo Modules: USB-PD Triggers by Jim Rowe
  13. Project: Simple Linear MIDI Keyboard by Tim Blythman
  14. PartShop
  15. Vintage Radio: Bush VTR103 AM/FM radio by Ian Batty
  16. Market Centre
  17. Advertising Index
  18. Notes & Errata: Ultra-LD MK.4 Amplifier, July-August 2015
  19. Outer Back Cover

This is only a preview of the August 2021 issue of Silicon Chip.

You can view 39 of the 112 pages in the full issue, including the advertisments.

For full access, purchase the issue for $10.00 or subscribe for access to the latest issues.

Articles in this series:
  • Advanced Medical & Biometric Imaging – Part 1 (August 2021)
  • Advanced Medical & Biometric Imaging – Part 1 (August 2021)
  • Advanced Imaging - Part 2 (September 2021)
  • Advanced Imaging - Part 2 (September 2021)
Items relevant to "Second Generation Colour Maximite 2 – Part 1":
  • Second-generation Colour Maximite 2 PCB [07108211] (AUD $15.00)
  • Colour Maximite 2 software and documentation (Free)
  • Second-generation Colour Maximite 2 PCB pattern (PDF download) [07108211] (Free)
Articles in this series:
  • Second Generation Colour Maximite 2 – Part 1 (August 2021)
  • Second Generation Colour Maximite 2 – Part 1 (August 2021)
  • Second Generation Colour Maximite 2 – Part 2 (September 2021)
  • Second Generation Colour Maximite 2 – Part 2 (September 2021)
Items relevant to "Nano Pong using an 8-pin PIC":
  • Nano TV Pong PCB [08105212] (AUD $2.50)
  • PIC12F1572-I/SN programmed for Nano TV Pong [0810521B.HEX] (Programmed Microcontroller, AUD $10.00)
  • Nano TV Pong short form kit (Component, AUD $17.50)
  • Firmware for Nano TV Pong (Software, Free)
  • Nano TV Pong PCB pattern (PDF download) [08105212] (Free)
Items relevant to "Multi-Purpose Battery Manager":
  • Battery Manager Soft Switch PCB [11104211] (AUD $5.00)
  • Battery Manager I/O Expander PCB [11104212] (AUD $2.50)
  • Battery Multi Logger PCB [11106201] (AUD $5.00)
  • PIC32MX170F256B-I/SO programmed for the Battery Manager [1110620B.hex] (Programmed Microcontroller, AUD $20.00)
  • PIC16F1455-I/SL programmed for the Microbridge [2410417A.HEX] (Programmed Microcontroller, AUD $10.00)
  • DS3231MZ real-time clock IC (SOIC-8) (Component, AUD $8.00)
  • DS3231 real-time clock IC (SOIC-16) (Component, AUD $7.50)
  • 2.8-inch TFT Touchscreen LCD module with SD card socket (Component, AUD $25.00)
  • SMD resistor - 15mΩ ±1% M6332/2512 3W (CRA2512-FZ-R015ELF or similar) (Source component, AUD $2.00)
  • Matte/Gloss Black UB3 Lid for 2.8-inch Micromite LCD BackPack (PCB, AUD $5.00)
  • Battery Manager software [1110620B.hex] (Free)
  • Battery Manager Soft Switch PCB pattern (PDF download) [11104211] (Free)
  • Battery Manager I/O Expander PCB pattern (PDF download) [11104212] (Free)
  • Battery Multi Logger PCB pattern (PDF download) [11106201] (Free)
Articles in this series:
  • El Cheapo Modules From Asia - Part 1 (October 2016)
  • El Cheapo Modules From Asia - Part 1 (October 2016)
  • El Cheapo Modules From Asia - Part 2 (December 2016)
  • El Cheapo Modules From Asia - Part 2 (December 2016)
  • El Cheapo Modules From Asia - Part 3 (January 2017)
  • El Cheapo Modules From Asia - Part 3 (January 2017)
  • El Cheapo Modules from Asia - Part 4 (February 2017)
  • El Cheapo Modules from Asia - Part 4 (February 2017)
  • El Cheapo Modules, Part 5: LCD module with I²C (March 2017)
  • El Cheapo Modules, Part 5: LCD module with I²C (March 2017)
  • El Cheapo Modules, Part 6: Direct Digital Synthesiser (April 2017)
  • El Cheapo Modules, Part 6: Direct Digital Synthesiser (April 2017)
  • El Cheapo Modules, Part 7: LED Matrix displays (June 2017)
  • El Cheapo Modules, Part 7: LED Matrix displays (June 2017)
  • El Cheapo Modules: Li-ion & LiPo Chargers (August 2017)
  • El Cheapo Modules: Li-ion & LiPo Chargers (August 2017)
  • El Cheapo modules Part 9: AD9850 DDS module (September 2017)
  • El Cheapo modules Part 9: AD9850 DDS module (September 2017)
  • El Cheapo Modules Part 10: GPS receivers (October 2017)
  • El Cheapo Modules Part 10: GPS receivers (October 2017)
  • El Cheapo Modules 11: Pressure/Temperature Sensors (December 2017)
  • El Cheapo Modules 11: Pressure/Temperature Sensors (December 2017)
  • El Cheapo Modules 12: 2.4GHz Wireless Data Modules (January 2018)
  • El Cheapo Modules 12: 2.4GHz Wireless Data Modules (January 2018)
  • El Cheapo Modules 13: sensing motion and moisture (February 2018)
  • El Cheapo Modules 13: sensing motion and moisture (February 2018)
  • El Cheapo Modules 14: Logarithmic RF Detector (March 2018)
  • El Cheapo Modules 14: Logarithmic RF Detector (March 2018)
  • El Cheapo Modules 16: 35-4400MHz frequency generator (May 2018)
  • El Cheapo Modules 16: 35-4400MHz frequency generator (May 2018)
  • El Cheapo Modules 17: 4GHz digital attenuator (June 2018)
  • El Cheapo Modules 17: 4GHz digital attenuator (June 2018)
  • El Cheapo: 500MHz frequency counter and preamp (July 2018)
  • El Cheapo: 500MHz frequency counter and preamp (July 2018)
  • El Cheapo modules Part 19 – Arduino NFC Shield (September 2018)
  • El Cheapo modules Part 19 – Arduino NFC Shield (September 2018)
  • El cheapo modules, part 20: two tiny compass modules (November 2018)
  • El cheapo modules, part 20: two tiny compass modules (November 2018)
  • El cheapo modules, part 21: stamp-sized audio player (December 2018)
  • El cheapo modules, part 21: stamp-sized audio player (December 2018)
  • El Cheapo Modules 22: Stepper Motor Drivers (February 2019)
  • El Cheapo Modules 22: Stepper Motor Drivers (February 2019)
  • El Cheapo Modules 23: Galvanic Skin Response (March 2019)
  • El Cheapo Modules 23: Galvanic Skin Response (March 2019)
  • El Cheapo Modules: Class D amplifier modules (May 2019)
  • El Cheapo Modules: Class D amplifier modules (May 2019)
  • El Cheapo Modules: Long Range (LoRa) Transceivers (June 2019)
  • El Cheapo Modules: Long Range (LoRa) Transceivers (June 2019)
  • El Cheapo Modules: AD584 Precision Voltage References (July 2019)
  • El Cheapo Modules: AD584 Precision Voltage References (July 2019)
  • Three I-O Expanders to give you more control! (November 2019)
  • Three I-O Expanders to give you more control! (November 2019)
  • El Cheapo modules: “Intelligent” 8x8 RGB LED Matrix (January 2020)
  • El Cheapo modules: “Intelligent” 8x8 RGB LED Matrix (January 2020)
  • El Cheapo modules: 8-channel USB Logic Analyser (February 2020)
  • El Cheapo modules: 8-channel USB Logic Analyser (February 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules (May 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules (May 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules, Part 2 (June 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules, Part 2 (June 2020)
  • El Cheapo Modules: Mini Digital Volt/Amp Panel Meters (December 2020)
  • El Cheapo Modules: Mini Digital Volt/Amp Panel Meters (December 2020)
  • El Cheapo Modules: Mini Digital AC Panel Meters (January 2021)
  • El Cheapo Modules: Mini Digital AC Panel Meters (January 2021)
  • El Cheapo Modules: LCR-T4 Digital Multi-Tester (February 2021)
  • El Cheapo Modules: LCR-T4 Digital Multi-Tester (February 2021)
  • El Cheapo Modules: USB-PD chargers (July 2021)
  • El Cheapo Modules: USB-PD chargers (July 2021)
  • El Cheapo Modules: USB-PD Triggers (August 2021)
  • El Cheapo Modules: USB-PD Triggers (August 2021)
  • El Cheapo Modules: 3.8GHz Digital Attenuator (October 2021)
  • El Cheapo Modules: 3.8GHz Digital Attenuator (October 2021)
  • El Cheapo Modules: 6GHz Digital Attenuator (November 2021)
  • El Cheapo Modules: 6GHz Digital Attenuator (November 2021)
  • El Cheapo Modules: 35MHz-4.4GHz Signal Generator (December 2021)
  • El Cheapo Modules: 35MHz-4.4GHz Signal Generator (December 2021)
  • El Cheapo Modules: LTDZ Spectrum Analyser (January 2022)
  • El Cheapo Modules: LTDZ Spectrum Analyser (January 2022)
  • Low-noise HF-UHF Amplifiers (February 2022)
  • Low-noise HF-UHF Amplifiers (February 2022)
  • A Gesture Recognition Module (March 2022)
  • A Gesture Recognition Module (March 2022)
  • Air Quality Sensors (May 2022)
  • Air Quality Sensors (May 2022)
  • MOS Air Quality Sensors (June 2022)
  • MOS Air Quality Sensors (June 2022)
  • PAS CO2 Air Quality Sensor (July 2022)
  • PAS CO2 Air Quality Sensor (July 2022)
  • Particulate Matter (PM) Sensors (November 2022)
  • Particulate Matter (PM) Sensors (November 2022)
  • Heart Rate Sensor Module (February 2023)
  • Heart Rate Sensor Module (February 2023)
  • UVM-30A UV Light Sensor (May 2023)
  • UVM-30A UV Light Sensor (May 2023)
  • VL6180X Rangefinding Module (July 2023)
  • VL6180X Rangefinding Module (July 2023)
  • pH Meter Module (September 2023)
  • pH Meter Module (September 2023)
  • 1.3in Monochrome OLED Display (October 2023)
  • 1.3in Monochrome OLED Display (October 2023)
  • 16-bit precision 4-input ADC (November 2023)
  • 16-bit precision 4-input ADC (November 2023)
  • 1-24V USB Power Supply (October 2024)
  • 1-24V USB Power Supply (October 2024)
  • 14-segment, 4-digit LED Display Modules (November 2024)
  • 0.91-inch OLED Screen (November 2024)
  • 0.91-inch OLED Screen (November 2024)
  • 14-segment, 4-digit LED Display Modules (November 2024)
  • The Quason VL6180X laser rangefinder module (January 2025)
  • TCS230 Colour Sensor (January 2025)
  • The Quason VL6180X laser rangefinder module (January 2025)
  • TCS230 Colour Sensor (January 2025)
  • Using Electronic Modules: 1-24V Adjustable USB Power Supply (February 2025)
  • Using Electronic Modules: 1-24V Adjustable USB Power Supply (February 2025)
Items relevant to "Simple Linear MIDI Keyboard":
  • 64-Key Arduino MIDI Shield PCB [23101211] (AUD $5.00)
  • 8x8 Tactile Pushbutton Switch Matrix PCB [23101212] (AUD $10.00)
  • Simple Linear MIDI Keyboard PCB [23101213] (AUD $5.00)
  • Firmware for the 64-Key Arduino MIDI Matrix (Software, Free)
  • Software for the Arduino MIDI Shield & 8x8 Key Matrix plus 3D keycap model (Free)
  • 64-Key Arduino MIDI Shield PCB pattern (PDF download) [23101211] (Free)
  • 8x8 Tactile Pushbutton Switch Matrix PCB pattern (PDF download) [23101212] (Free)
  • Simple Linear MIDI Keyboard PCB pattern (PDF download) [23101213] (Free)
  • Simple Linear MIDI Keyboard Joiner PCB [23101214] (AUD $1.00)
Articles in this series:
  • Arduino-based MIDI Soundboard - Part 1 (April 2021)
  • Arduino-based MIDI Soundboard - Part 1 (April 2021)
  • Arduino-based MIDI Soundboard – Part 2 (May 2021)
  • Arduino-based MIDI Soundboard – Part 2 (May 2021)
  • Simple Linear MIDI Keyboard (August 2021)
  • Simple Linear MIDI Keyboard (August 2021)

Purchase a printed copy of this issue for $10.00.

SILICON SILIC CHIP www.siliconchip.com.au Publisher/Editor Nicholas Vinen Technical Editor John Clarke, B.E.(Elec.) Technical Staff Jim Rowe, B.A., B.Sc. Bao Smith, B.Sc. Tim Blythman, B.E., B.Sc. Nicolas Hannekum, Dip. Elec. Tech. Technical Contributor Duraid Madina, B.Sc, M.Sc, PhD Reader Services Rhonda Blythman, BSc, LLB, GDLP Advertising Enquiries Glyn Smith Phone (02) 9939 3295 Mobile 0431 792 293 glyn<at>siliconchip.com.au Regular Contributors Dave Thompson David Maddison B.App.Sc. (Hons 1), PhD, Grad.Dip.Entr.Innov. Geoff Graham Associate Professor Graham Parslow Ian Batty Cartoonist Brendan Akhurst Founding Editor (retired) Leo Simpson, B.Bus., FAICD Staff (retired) Ross Tester Ann Morris Greg Swain, B. Sc. (Hons.) Silicon Chip is published 12 times a year by Silicon Chip Publications Pty Ltd. ACN 626 922 870. ABN 20 880 526 923. All material is copyright ©. No part of this publication may be reproduced without the written consent of the publisher. Subscription rates (Australia only): 12 issues (1 year): $105, post paid 24 issues (2 years): $202, post paid For overseas rates, see our website or email silicon<at>siliconchip.com.au Recommended & maximum price only. Editorial office: Unit 1 (up ramp), 234 Harbord Rd, Brookvale, NSW 2100. Postal address: PO Box 139, Collaroy Beach, NSW 2097. Phone (02) 9939 3295. ISSN 1030-2662 Printing and Distribution: Editorial Viewpoint Productivity Commission report on the Right to Repair T he Productivity Commission has released a draft report on the right to repair, which you can view at www.pc.gov.au/inquiries/current/repair#draft It is open for comments. However, by the time you read this magazine, the comment period will have ended. While the introduction makes it clear that they understand the issues raised by the right to repair movement, I don’t agree with some of their conclusions. For example, they state that “Additional policies to combat premature product obsolescence (in the form of product standards or expanded consumer protection laws to address planned obsolescence) would be unlikely to have net benefits for the community.” I think most Silicon Chip readers will agree that this is wrong. They seem to be conflating the concern that manufacturers purposefully create products with a short lifespan (which I think is generally not true, with some exceptions) with the concern that, by limiting repair options, manufacturers make repairing products so difficult that users have little choice but to replace them when they fail. By legislating to expand those repair options, such as ensuring that spare parts are available beyond the warranty period, consumers could more economically keep devices functional. That would be a net benefit for the community, and I have plenty of anecdotes to support this (many of them are published in our Serviceman’s Log column). For example, I had an air conditioning unit fail after less than ten years due to PCB track corrosion. The serviceman who came out told me that a replacement board was not available, so I would have to replace both the outdoor and indoor units. I was able to fix it by soldering a wire link across the corroded track, which took about two minutes and cost nothing. That unit went on to function for many more years. Consider that the vast majority of consumers in that position would have been forced to shell out perhaps $1000 or more for new units plus the cost of removing the old units and installing the new ones. They might have also had to make some cosmetic repairs due to the new unit not being the same size and shape as the old one. Not to mention all the extra waste generated. All that expense and hassle for a single corroded track that was visually obvious. I’m not knocking the serviceman; I don’t expect air conditioning companies to train technicians to make component-level repairs, and he helped me make the repair which saved me a lot of money and hassles. But that replacement board really should have been available. If it had been, I don’t think it would have cost all that much as it was little more than an infrared receiver and a couple of ICs that relayed commands back to the main control board. And I had already paid for the call-out, so even with the labour to come and swap the modules over, the repair probably would have cost a couple of hundred dollars total; way less than a new aircon. I bet the same story is repeated over and over with washing machines, dishwashers, stoves and all manner of appliances still well within their useful lives. “Sorry, we can’t get a replacement for the module that has failed. You’ll have to buy a new unit.” Or something along those lines. So, while this report seems generally supportive of the right to repair, I don’t think the authors truly understand the situation. While there are costs associated with requiring manufacturers to offer spare parts for a longer period (more in line with the actual useful lives of those products), likely raising the price of those goods slightly, I am confident that the benefits would outweigh those costs. I will be stating this in a submission to the Productivity Commission, and I hope they take it into consideration. by Nicholas Vinen 24-26 Lilian Fowler Pl, Marrickville 2204 2  Silicon Chip Australia’s electronics magazine siliconchip.com.au