Silicon ChipI, for one, welcome our new farm robot overlords - June 2018 SILICON CHIP
  1. Outer Front Cover
  2. Contents
  3. Publisher's Letter: I, for one, welcome our new farm robot overlords
  4. Feature: AgBots – robots working on the farm of tomorrow! by Dr David Maddison
  5. Project: The USB Flexitimer: accurately timed switching by John Clarke and Nicholas Vinen
  6. Project: Wide-range digital LC Meter by Tim Blythman
  7. PartShop
  8. Project: Switch on or off anything with a Temperature Switch by John Clarke
  9. Subscriptions
  10. Serviceman's Log: Repairing ‘proper’ stereo gear is satisfying by Dave Thompson
  11. Project: 800W (+) Uninterruptible Power Supply (UPS) Part II by Duraid Madina and Tim Blythman
  12. Review: Degen’s wind-up or solar-powered AM/FM/SW radio by Ross Tester
  13. Feature: El Cheapo Modules 17: 4GHz digital attenuator by Jim Rowe
  14. PartShop
  15. Vintage Radio: 1952 Astor GP/PS Hybrid Portable by Associate Professor Graham Parslow
  16. Product Showcase
  17. Market Centre
  18. Advertising Index
  19. Notes & Errata: 6GHz+ Touchscreen Frequency Counter / 800W+ Uninterruptible Power Supply / Deluxe Frequency Switch / USB Port Protector
  20. Outer Back Cover

This is only a preview of the June 2018 issue of Silicon Chip.

You can view 38 of the 104 pages in the full issue, including the advertisments.

For full access, purchase the issue for $10.00 or subscribe for access to the latest issues.

Articles in this series:
  • AgBots – robots working on the farm of tomorrow! (June 2018)
  • AgBots – robots working on the farm of tomorrow! (June 2018)
  • The farm of the future . . . Part II (July 2018)
  • The farm of the future . . . Part II (July 2018)
Items relevant to "The USB Flexitimer: accurately timed switching":
  • USB Flexitimer PCB [19106181] (AUD $7.50)
  • PIC16F1455-I/P programmed for the USB Flexitimer [1910618A.HEX] (Programmed Microcontroller, AUD $10.00)
  • Firmware (C and HEX) files for the USB Flexitimer [1910618A.HEX] (Software, Free)
  • USB Flexitimer PCB pattern (PDF download) [19106181] (Free)
Items relevant to "Wide-range digital LC Meter":
  • Wide-range digital LC Meter PCB with stackable headers [04106181] (AUD $7.50)
  • Wide-range digital LC Meter PCB [04106181] (AUD $5.00)
  • Pair of PCB-mounting right-angle banana sockets (red/black) (Component, AUD $6.00)
  • 1nF ±1% polypropylene (MKP) or C0G/NP0 ceramic capacitor (Component, AUD $2.50)
  • 20x4 Alphanumeric serial (I²C) LCD module with blue backlight (Component, AUD $15.00)
  • Case pieces for the Wide-range Digital LC Meter (PCB, AUD $7.50)
  • Arduino Sketch (.ino) and libraries for the Wide-Range Digital LC Meter (Software, Free)
  • Wide-range digital LC Meter PCB pattern (PDF download) [04106181] (Free)
Items relevant to "Switch on or off anything with a Temperature Switch":
  • Temperature Switch Mk2 PCB [05105181] (AUD $7.50)
  • PIC12F617-I/P programmed for the Temperature Switch Mk2 [0510518A.HEX] (Programmed Microcontroller, AUD $10.00)
  • Firmware (ASM and HEX) files for the Temperature Switch Mk2 [0510518A.HEX] (Software, Free)
  • Temperature Switch Mk2 PCB pattern (PDF download) [05105181] (Free)
Items relevant to "800W (+) Uninterruptible Power Supply (UPS) Part II":
  • 800W+ Uninterruptible Power Supply control shield PCB [11106181] (AUD $5.00)
  • Arduino Sketches (.ino) and library for the 800W+ Uninterruptable Power Supply (Software, Free)
  • 800W+ Uninterruptible Power Supply control shield PCB pattern (PDF download) [11106181] (Free)
  • 800W+ Uninterruptible Power Supply front panel artwork (PDF download) (Free)
Articles in this series:
  • 800W (+) Uninterruptible Power Supply (UPS) (May 2018)
  • 800W (+) Uninterruptible Power Supply (UPS) (May 2018)
  • 800W (+) Uninterruptible Power Supply (UPS) Part II (June 2018)
  • 800W (+) Uninterruptible Power Supply (UPS) Part II (June 2018)
  • 800W (+) Uninterruptible Power Supply (UPS) Part III (July 2018)
  • 800W (+) Uninterruptible Power Supply (UPS) Part III (July 2018)
Articles in this series:
  • El Cheapo Modules From Asia - Part 1 (October 2016)
  • El Cheapo Modules From Asia - Part 1 (October 2016)
  • El Cheapo Modules From Asia - Part 2 (December 2016)
  • El Cheapo Modules From Asia - Part 2 (December 2016)
  • El Cheapo Modules From Asia - Part 3 (January 2017)
  • El Cheapo Modules From Asia - Part 3 (January 2017)
  • El Cheapo Modules from Asia - Part 4 (February 2017)
  • El Cheapo Modules from Asia - Part 4 (February 2017)
  • El Cheapo Modules, Part 5: LCD module with I²C (March 2017)
  • El Cheapo Modules, Part 5: LCD module with I²C (March 2017)
  • El Cheapo Modules, Part 6: Direct Digital Synthesiser (April 2017)
  • El Cheapo Modules, Part 6: Direct Digital Synthesiser (April 2017)
  • El Cheapo Modules, Part 7: LED Matrix displays (June 2017)
  • El Cheapo Modules, Part 7: LED Matrix displays (June 2017)
  • El Cheapo Modules: Li-ion & LiPo Chargers (August 2017)
  • El Cheapo Modules: Li-ion & LiPo Chargers (August 2017)
  • El Cheapo modules Part 9: AD9850 DDS module (September 2017)
  • El Cheapo modules Part 9: AD9850 DDS module (September 2017)
  • El Cheapo Modules Part 10: GPS receivers (October 2017)
  • El Cheapo Modules Part 10: GPS receivers (October 2017)
  • El Cheapo Modules 11: Pressure/Temperature Sensors (December 2017)
  • El Cheapo Modules 11: Pressure/Temperature Sensors (December 2017)
  • El Cheapo Modules 12: 2.4GHz Wireless Data Modules (January 2018)
  • El Cheapo Modules 12: 2.4GHz Wireless Data Modules (January 2018)
  • El Cheapo Modules 13: sensing motion and moisture (February 2018)
  • El Cheapo Modules 13: sensing motion and moisture (February 2018)
  • El Cheapo Modules 14: Logarithmic RF Detector (March 2018)
  • El Cheapo Modules 14: Logarithmic RF Detector (March 2018)
  • El Cheapo Modules 16: 35-4400MHz frequency generator (May 2018)
  • El Cheapo Modules 16: 35-4400MHz frequency generator (May 2018)
  • El Cheapo Modules 17: 4GHz digital attenuator (June 2018)
  • El Cheapo Modules 17: 4GHz digital attenuator (June 2018)
  • El Cheapo: 500MHz frequency counter and preamp (July 2018)
  • El Cheapo: 500MHz frequency counter and preamp (July 2018)
  • El Cheapo modules Part 19 – Arduino NFC Shield (September 2018)
  • El Cheapo modules Part 19 – Arduino NFC Shield (September 2018)
  • El cheapo modules, part 20: two tiny compass modules (November 2018)
  • El cheapo modules, part 20: two tiny compass modules (November 2018)
  • El cheapo modules, part 21: stamp-sized audio player (December 2018)
  • El cheapo modules, part 21: stamp-sized audio player (December 2018)
  • El Cheapo Modules 22: Stepper Motor Drivers (February 2019)
  • El Cheapo Modules 22: Stepper Motor Drivers (February 2019)
  • El Cheapo Modules 23: Galvanic Skin Response (March 2019)
  • El Cheapo Modules 23: Galvanic Skin Response (March 2019)
  • El Cheapo Modules: Class D amplifier modules (May 2019)
  • El Cheapo Modules: Class D amplifier modules (May 2019)
  • El Cheapo Modules: Long Range (LoRa) Transceivers (June 2019)
  • El Cheapo Modules: Long Range (LoRa) Transceivers (June 2019)
  • El Cheapo Modules: AD584 Precision Voltage References (July 2019)
  • El Cheapo Modules: AD584 Precision Voltage References (July 2019)
  • Three I-O Expanders to give you more control! (November 2019)
  • Three I-O Expanders to give you more control! (November 2019)
  • El Cheapo modules: “Intelligent” 8x8 RGB LED Matrix (January 2020)
  • El Cheapo modules: “Intelligent” 8x8 RGB LED Matrix (January 2020)
  • El Cheapo modules: 8-channel USB Logic Analyser (February 2020)
  • El Cheapo modules: 8-channel USB Logic Analyser (February 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules (May 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules (May 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules, Part 2 (June 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules, Part 2 (June 2020)
  • El Cheapo Modules: Mini Digital Volt/Amp Panel Meters (December 2020)
  • El Cheapo Modules: Mini Digital Volt/Amp Panel Meters (December 2020)
  • El Cheapo Modules: Mini Digital AC Panel Meters (January 2021)
  • El Cheapo Modules: Mini Digital AC Panel Meters (January 2021)
  • El Cheapo Modules: LCR-T4 Digital Multi-Tester (February 2021)
  • El Cheapo Modules: LCR-T4 Digital Multi-Tester (February 2021)
  • El Cheapo Modules: USB-PD chargers (July 2021)
  • El Cheapo Modules: USB-PD chargers (July 2021)
  • El Cheapo Modules: USB-PD Triggers (August 2021)
  • El Cheapo Modules: USB-PD Triggers (August 2021)
  • El Cheapo Modules: 3.8GHz Digital Attenuator (October 2021)
  • El Cheapo Modules: 3.8GHz Digital Attenuator (October 2021)
  • El Cheapo Modules: 6GHz Digital Attenuator (November 2021)
  • El Cheapo Modules: 6GHz Digital Attenuator (November 2021)
  • El Cheapo Modules: 35MHz-4.4GHz Signal Generator (December 2021)
  • El Cheapo Modules: 35MHz-4.4GHz Signal Generator (December 2021)
  • El Cheapo Modules: LTDZ Spectrum Analyser (January 2022)
  • El Cheapo Modules: LTDZ Spectrum Analyser (January 2022)
  • Low-noise HF-UHF Amplifiers (February 2022)
  • Low-noise HF-UHF Amplifiers (February 2022)
  • A Gesture Recognition Module (March 2022)
  • A Gesture Recognition Module (March 2022)
  • Air Quality Sensors (May 2022)
  • Air Quality Sensors (May 2022)
  • MOS Air Quality Sensors (June 2022)
  • MOS Air Quality Sensors (June 2022)
  • PAS CO2 Air Quality Sensor (July 2022)
  • PAS CO2 Air Quality Sensor (July 2022)
  • Particulate Matter (PM) Sensors (November 2022)
  • Particulate Matter (PM) Sensors (November 2022)
  • Heart Rate Sensor Module (February 2023)
  • Heart Rate Sensor Module (February 2023)
  • UVM-30A UV Light Sensor (May 2023)
  • UVM-30A UV Light Sensor (May 2023)
  • VL6180X Rangefinding Module (July 2023)
  • VL6180X Rangefinding Module (July 2023)
  • pH Meter Module (September 2023)
  • pH Meter Module (September 2023)
  • 1.3in Monochrome OLED Display (October 2023)
  • 1.3in Monochrome OLED Display (October 2023)
  • 16-bit precision 4-input ADC (November 2023)
  • 16-bit precision 4-input ADC (November 2023)
  • 1-24V USB Power Supply (October 2024)
  • 1-24V USB Power Supply (October 2024)
  • 14-segment, 4-digit LED Display Modules (November 2024)
  • 0.91-inch OLED Screen (November 2024)
  • 0.91-inch OLED Screen (November 2024)
  • 14-segment, 4-digit LED Display Modules (November 2024)
  • The Quason VL6180X laser rangefinder module (January 2025)
  • TCS230 Colour Sensor (January 2025)
  • The Quason VL6180X laser rangefinder module (January 2025)
  • TCS230 Colour Sensor (January 2025)
  • Using Electronic Modules: 1-24V Adjustable USB Power Supply (February 2025)
  • Using Electronic Modules: 1-24V Adjustable USB Power Supply (February 2025)

Purchase a printed copy of this issue for $10.00.

SILICON SILIC CHIP www.siliconchip.com.au Publisher Leo Simpson, B.Bus., FAICD Editor Nicholas Vinen Technical Editor John Clarke, B.E.(Elec.) Technical Staff Jim Rowe, B.A., B.Sc Bao Smith, B.Sc Tim Blythman, B.E., B.Sc Technical Contributor Duraid Madina, B.Sc, M.Sc, PhD Art Director & Production Manager Ross Tester Reader Services Ann Morris Advertising Enquiries Glyn Smith Phone (02) 9939 3295 Mobile 0431 792 293 glyn<at>siliconchip.com.au Regular Contributors Dave Thompson David Maddison B.App.Sc. (Hons 1), PhD, Grad.Dip.Entr.Innov. Geoff Graham Associate Professor Graham Parslow Ian Batty Cartoonist Brendan Akhurst Silicon Chip is published 12 times a year by Silicon Chip Publications Pty Ltd. ACN 003 205 490. ABN 49 003 205 490. All material is copyright ©. No part of this publication may be reproduced without the written consent of the publisher. Subscription rates: $105.00 per year in Australia. For overseas rates, see our website or the subscriptions page in this issue. Editorial office: Unit 1 (up ramp), 234 Harbord Rd, Brookvale, NSW 2100. Postal address: PO Box 139, Collaroy Beach, NSW 2097. Phone (02) 9939 3295. E-mail: silicon<at>siliconchip.com.au Printing and Distribution: Derby Street, Silverwater, NSW 2148. Editorial Viewpoint I, for one, welcome our new farm robot overlords After reading the article on agricultural robots in this issue, some readers may be concerned about the job losses resulting from their inevitable use on Australian farms. But increased automation on farms is on-going and is desirable, for a number of reasons. There are plenty of jobs available on Australian farms (siliconchip.com.au/link/aak1) but very few people available to do the work. You can understand why: who wants to live out the back of Woop Woop or work in the hot sun all day? Robots, however, generally don’t complain about their employment conditions! And if you’re concerned about the pesticides, herbicides and fertilisers used in agriculture, you will be pleased to hear that the technology described in our article should lead to a reduction in the use of all of those chemicals. That’s partly because robots allow these chemicals to be used in a much more targeted manner. For example, robots can roam the fields, spraying individual weeds so that farmers don’t have to spray the whole crop. Some can even kill the weeds without needing any chemicals at all. We also describe technology which allows fertiliser to be applied to the plants which need it most. Another technique for increased pest and disease resistance is known as “inter-cropping” but this is generally only feasible in countries with cheap labour. But research from the University of Wageningen in The Netherlands mentions that robot technology could make this technique practical on a larger scale, as is necessary in a vast country like Australia (see siliconchip.com.au/link/aajz). Another important modern farming technique is “no-till” farming which has become widespread in Australia over the last couple of decades. By reducing or eliminating tilling, soil erosion is reduced, water retention is improved and the remnants of the last crop help to fertilise the next one. But one of the problems with no-till farming is that it relies on increased use of herbicides to kill weeds, and with weeds now becoming resistant to herbicides, farmers may need to go back to tilling to keep them under control (siliconchip.com.au/link/aak2). The aforementioned weed-killing robots may help solve this problem too. The bottom line is that continually improving farm technology should allow food to be grown in a manner which is far more sustainable and better for humans and the environment. In my opinion, this sort of technology is far more important to society than autonomous cars, which have been getting a lot of attention and investment lately (to the tune of hundreds of billions of dollars in the last few years). Agricultural technology is also easier to roll out on a wide scale since farms are a much more controlled environment. And it will have a far greater positive impact on society if it means a cheaper, fresher and more plentiful food supply. So more investment in this area would be very beneficial. Australia needs to be at the forefront in developing agricultural technology. With our limited rainfall, huge areas under cultivation and limited rural workforce, we need to actively develop and use the technology in order to reinforce our position as a major food producer. ISSN 1030-2662 Recommended & maximum price only. 2 Silicon Chip Nicholas Vinen Celebrating 30 Years siliconchip.com.au