Silicon ChipCutting-edge technology – in 1958 - March 2017 SILICON CHIP
  1. Outer Front Cover
  2. Contents
  3. Publisher's Letter: Cutting-edge technology – in 1958
  4. Feature: Vale Maurie Findlay: Australian electronics “royalty” by Ross Tester
  5. Feature: Putting a big 43-inch 4K monitor to the test by Leo Simpson
  6. Feature: Australia’s largest vintage radio exhibition by Kevin Poulter
  7. Project: All-new Swimming Pool Lap Counter by John Clarke
  8. Project: The Stationmaster: walk-around PWM train control by Design by Bob Sherwood
  9. Project: Bargain Solar Cells – and what to do with them! by Ross Tester
  10. Product Showcase
  11. Serviceman's Log: Fixing a guitar amp is an enjoyable task by Dave Thompson
  12. Feature: Getting Started with the Micromite, Part Two by Geoff Graham
  13. Project: New SC200 Audio Amplifier - Part 3 by Nicholas Vinen
  14. Project: El Cheapo Modules, Part 5: LCD module with I²C by Jim Rowe
  15. Vintage Radio: Sony's TR-712 Mantel Radio by Ian Batty
  16. Subscriptions
  17. PartShop
  18. Market Centre
  19. Notes & Errata: GPS-Synchronised Analog Clock / Improved PICAXE Wireless Rain Alarm / High Power DC Motor Speed Control
  20. Advertising Index

This is only a preview of the March 2017 issue of Silicon Chip.

You can view 48 of the 104 pages in the full issue, including the advertisments.

For full access, purchase the issue for $10.00 or subscribe for access to the latest issues.

Items relevant to "All-new Swimming Pool Lap Counter":
  • All-new Swimming Pool Lap Counter PCB [19102171] (AUD $15.00)
  • PIC16F88-I/P programmed for the All-new Swimming Pool Lap Counter [1910217A.HEX] (Programmed Microcontroller, AUD $15.00)
  • Hard-to-get parts for the LED Pool Lap Counter (Component, AUD $20.00)
  • Translucent blue UB1 lid for the All-new Swimming Pool Lap Counter (PCB, AUD $7.50)
  • Firmware (ASM and HEX) files for the Bright LED Pool Lap Counter [1910217A.HEX] (Software, Free)
  • All-new Swimming Pool Lap Counter PCB pattern (PDF download) [19102171] (Free)
  • All-new Swimming Pool Lap Counter front panel artwork (PDF download) (Free)
Items relevant to "The Stationmaster: walk-around PWM train control":
  • Stationmaster PWM train controller PCBs [09103171/2] (AUD $15.00)
  • Hard-to-get parts for the Stationmaster (Component, AUD $15.00)
  • Stationmaster PCB patterns (PDF download) [09103171/2] (Free)
  • Stationmaster panel artwork (PDF download) (Free)
Articles in this series:
  • Getting Started with the Micromite (February 2017)
  • Getting Started with the Micromite (February 2017)
  • Getting Started with the Micromite, Part Two (March 2017)
  • Getting Started with the Micromite, Part Two (March 2017)
  • Micromite Tutorial, Part 3: strings and arrays (May 2017)
  • Micromite Tutorial, Part 3: strings and arrays (May 2017)
  • Getting Started with the Micromite, Part 4 (June 2017)
  • Getting Started with the Micromite, Part 4 (June 2017)
Items relevant to "New SC200 Audio Amplifier - Part 3":
  • Ultra-LD Mk3/Mk4 Amplifier Power Supply PCB [01109111] (AUD $15.00)
  • New SC200 Audio Amplifier PCB [01108161] (AUD $10.00)
  • Hard-to-get parts for the SC200 Audio Amplifier Module (Component, AUD $50.00)
  • New SC200 Audio Amplifier PCB pattern (PDF download) [01108161] (Free)
Articles in this series:
  • New SC200 Audio Amplifier (January 2017)
  • New SC200 Audio Amplifier (January 2017)
  • New SC200 Audio Amplifier – Part 2 (February 2017)
  • New SC200 Audio Amplifier – Part 2 (February 2017)
  • New SC200 Audio Amplifier - Part 3 (March 2017)
  • New SC200 Audio Amplifier - Part 3 (March 2017)
Items relevant to "El Cheapo Modules, Part 5: LCD module with I²C":
  • 20x4 Alphanumeric serial (I²C) LCD module with blue backlight (Component, AUD $15.00)
  • 16x2 Alphanumeric serial (I²C) LCD module with blue backlight (Component, AUD $12.50)
  • Software for El Cheapo Modules: LCD module with I²C (Free)
Articles in this series:
  • El Cheapo Modules From Asia - Part 1 (October 2016)
  • El Cheapo Modules From Asia - Part 1 (October 2016)
  • El Cheapo Modules From Asia - Part 2 (December 2016)
  • El Cheapo Modules From Asia - Part 2 (December 2016)
  • El Cheapo Modules From Asia - Part 3 (January 2017)
  • El Cheapo Modules From Asia - Part 3 (January 2017)
  • El Cheapo Modules from Asia - Part 4 (February 2017)
  • El Cheapo Modules from Asia - Part 4 (February 2017)
  • El Cheapo Modules, Part 5: LCD module with I²C (March 2017)
  • El Cheapo Modules, Part 5: LCD module with I²C (March 2017)
  • El Cheapo Modules, Part 6: Direct Digital Synthesiser (April 2017)
  • El Cheapo Modules, Part 6: Direct Digital Synthesiser (April 2017)
  • El Cheapo Modules, Part 7: LED Matrix displays (June 2017)
  • El Cheapo Modules, Part 7: LED Matrix displays (June 2017)
  • El Cheapo Modules: Li-ion & LiPo Chargers (August 2017)
  • El Cheapo Modules: Li-ion & LiPo Chargers (August 2017)
  • El Cheapo modules Part 9: AD9850 DDS module (September 2017)
  • El Cheapo modules Part 9: AD9850 DDS module (September 2017)
  • El Cheapo Modules Part 10: GPS receivers (October 2017)
  • El Cheapo Modules Part 10: GPS receivers (October 2017)
  • El Cheapo Modules 11: Pressure/Temperature Sensors (December 2017)
  • El Cheapo Modules 11: Pressure/Temperature Sensors (December 2017)
  • El Cheapo Modules 12: 2.4GHz Wireless Data Modules (January 2018)
  • El Cheapo Modules 12: 2.4GHz Wireless Data Modules (January 2018)
  • El Cheapo Modules 13: sensing motion and moisture (February 2018)
  • El Cheapo Modules 13: sensing motion and moisture (February 2018)
  • El Cheapo Modules 14: Logarithmic RF Detector (March 2018)
  • El Cheapo Modules 14: Logarithmic RF Detector (March 2018)
  • El Cheapo Modules 16: 35-4400MHz frequency generator (May 2018)
  • El Cheapo Modules 16: 35-4400MHz frequency generator (May 2018)
  • El Cheapo Modules 17: 4GHz digital attenuator (June 2018)
  • El Cheapo Modules 17: 4GHz digital attenuator (June 2018)
  • El Cheapo: 500MHz frequency counter and preamp (July 2018)
  • El Cheapo: 500MHz frequency counter and preamp (July 2018)
  • El Cheapo modules Part 19 – Arduino NFC Shield (September 2018)
  • El Cheapo modules Part 19 – Arduino NFC Shield (September 2018)
  • El cheapo modules, part 20: two tiny compass modules (November 2018)
  • El cheapo modules, part 20: two tiny compass modules (November 2018)
  • El cheapo modules, part 21: stamp-sized audio player (December 2018)
  • El cheapo modules, part 21: stamp-sized audio player (December 2018)
  • El Cheapo Modules 22: Stepper Motor Drivers (February 2019)
  • El Cheapo Modules 22: Stepper Motor Drivers (February 2019)
  • El Cheapo Modules 23: Galvanic Skin Response (March 2019)
  • El Cheapo Modules 23: Galvanic Skin Response (March 2019)
  • El Cheapo Modules: Class D amplifier modules (May 2019)
  • El Cheapo Modules: Class D amplifier modules (May 2019)
  • El Cheapo Modules: Long Range (LoRa) Transceivers (June 2019)
  • El Cheapo Modules: Long Range (LoRa) Transceivers (June 2019)
  • El Cheapo Modules: AD584 Precision Voltage References (July 2019)
  • El Cheapo Modules: AD584 Precision Voltage References (July 2019)
  • Three I-O Expanders to give you more control! (November 2019)
  • Three I-O Expanders to give you more control! (November 2019)
  • El Cheapo modules: “Intelligent” 8x8 RGB LED Matrix (January 2020)
  • El Cheapo modules: “Intelligent” 8x8 RGB LED Matrix (January 2020)
  • El Cheapo modules: 8-channel USB Logic Analyser (February 2020)
  • El Cheapo modules: 8-channel USB Logic Analyser (February 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules (May 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules (May 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules, Part 2 (June 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules, Part 2 (June 2020)
  • El Cheapo Modules: Mini Digital Volt/Amp Panel Meters (December 2020)
  • El Cheapo Modules: Mini Digital Volt/Amp Panel Meters (December 2020)
  • El Cheapo Modules: Mini Digital AC Panel Meters (January 2021)
  • El Cheapo Modules: Mini Digital AC Panel Meters (January 2021)
  • El Cheapo Modules: LCR-T4 Digital Multi-Tester (February 2021)
  • El Cheapo Modules: LCR-T4 Digital Multi-Tester (February 2021)
  • El Cheapo Modules: USB-PD chargers (July 2021)
  • El Cheapo Modules: USB-PD chargers (July 2021)
  • El Cheapo Modules: USB-PD Triggers (August 2021)
  • El Cheapo Modules: USB-PD Triggers (August 2021)
  • El Cheapo Modules: 3.8GHz Digital Attenuator (October 2021)
  • El Cheapo Modules: 3.8GHz Digital Attenuator (October 2021)
  • El Cheapo Modules: 6GHz Digital Attenuator (November 2021)
  • El Cheapo Modules: 6GHz Digital Attenuator (November 2021)
  • El Cheapo Modules: 35MHz-4.4GHz Signal Generator (December 2021)
  • El Cheapo Modules: 35MHz-4.4GHz Signal Generator (December 2021)
  • El Cheapo Modules: LTDZ Spectrum Analyser (January 2022)
  • El Cheapo Modules: LTDZ Spectrum Analyser (January 2022)
  • Low-noise HF-UHF Amplifiers (February 2022)
  • Low-noise HF-UHF Amplifiers (February 2022)
  • A Gesture Recognition Module (March 2022)
  • A Gesture Recognition Module (March 2022)
  • Air Quality Sensors (May 2022)
  • Air Quality Sensors (May 2022)
  • MOS Air Quality Sensors (June 2022)
  • MOS Air Quality Sensors (June 2022)
  • PAS CO2 Air Quality Sensor (July 2022)
  • PAS CO2 Air Quality Sensor (July 2022)
  • Particulate Matter (PM) Sensors (November 2022)
  • Particulate Matter (PM) Sensors (November 2022)
  • Heart Rate Sensor Module (February 2023)
  • Heart Rate Sensor Module (February 2023)
  • UVM-30A UV Light Sensor (May 2023)
  • UVM-30A UV Light Sensor (May 2023)
  • VL6180X Rangefinding Module (July 2023)
  • VL6180X Rangefinding Module (July 2023)
  • pH Meter Module (September 2023)
  • pH Meter Module (September 2023)
  • 1.3in Monochrome OLED Display (October 2023)
  • 1.3in Monochrome OLED Display (October 2023)
  • 16-bit precision 4-input ADC (November 2023)
  • 16-bit precision 4-input ADC (November 2023)
  • 1-24V USB Power Supply (October 2024)
  • 1-24V USB Power Supply (October 2024)
  • 14-segment, 4-digit LED Display Modules (November 2024)
  • 0.91-inch OLED Screen (November 2024)
  • 0.91-inch OLED Screen (November 2024)
  • 14-segment, 4-digit LED Display Modules (November 2024)
  • The Quason VL6180X laser rangefinder module (January 2025)
  • TCS230 Colour Sensor (January 2025)
  • The Quason VL6180X laser rangefinder module (January 2025)
  • TCS230 Colour Sensor (January 2025)
  • Using Electronic Modules: 1-24V Adjustable USB Power Supply (February 2025)
  • Using Electronic Modules: 1-24V Adjustable USB Power Supply (February 2025)

Purchase a printed copy of this issue for $10.00.

SILICON SILIC CHIP www.siliconchip.com.au Publisher & Editor-in-Chief Leo Simpson, B.Bus., FAICD Editor Nicholas Vinen Technical Editor John Clarke, B.E.(Elec.) Technical Staff Ross Tester Jim Rowe, B.A., B.Sc Bao Smith, B.Sc Photography Ross Tester Reader Services Ann Morris Advertising Enquiries Glyn Smith Phone (02) 9939 3295 Mobile 0431 792 293 glyn<at>siliconchip.com.au Regular Contributors Brendan Akhurst David Maddison B.App.Sc. (Hons 1), PhD, Grad.Dip.Entr.Innov. Kevin Poulter Dave Thompson SILICON CHIP is published 12 times a year by Silicon Chip Publications Pty Ltd. ACN 003 205 490. ABN 49 003 205 490. All material is copyright ©. No part of this publication may be reproduced without the written consent of the publisher. Printing and Distribution: Derby Street, Silverwater, NSW 2148. Subscription rates: $105.00 per year in Australia. For overseas rates, see our website or the subscriptions page in this issue. Editorial office: Unit 1 (up ramp), 234 Harbord Rd, Brookvale, NSW 2100. Postal address: PO Box 139, Collaroy Beach, NSW 2097. Phone (02) 9939 3295. E-mail: silicon<at>siliconchip.com.au ISSN 1030-2662 Recommended & maximum price only. 4  Silicon Chip Publisher’s Letter Cutting-edge technology – in 1958 These days the pace of technology change is so rapid and so all-pervasive that most people would have forgotten that this rapid change started to happen more than 60 years ago with the introduction of transistor radios, mostly made in Japan. Before that, all radios were valve-based and many western countries had their own electronics industries, largely devoted to the manufacture of valve radio and television sets. In a little more than a decade or so, Japan changed all that. In fact, Japan basically obliterated the domestic electronics manufacturing industry in most western countries. Nowadays many people worry about the loss of jobs to Asian countries but it all started with Japan. Not only were labour costs far lower in Japan than in western countries but the Japanese were leading the way with new technology. That fact is highlighted by Ian Batty’s story on the Sony TR-712 7-transistor mantel radio in this month’s Vintage Radio pages. This set was introduced in 1958 and it had only been in 1954 when the first transistor radio appeared (see SILICON CHIP, April 2013). Those first transistor radios were largely novelty items and their main attraction was just how small they were – you could stick them in your shirt pocket. In all other respects, those early “trannies” were woeful. They sounded awful, as anyone who can remember their “squark, squark” reproduction will attest, and their RF performance left a great deal to be desired. Their battery consumption was also very poor and for two particular reasons. First, as the battery voltage dropped, the bias in the class-B output stage became less and less optimum and severe (very severe) crossover distortion was the result. Second, once the battery voltage dropped by more than about a third, the local oscillator would fail to work and therefore the radio itself was out of action. But while the technical fraternity might have sneered at their shortcomings, preferring the much better sound of valve radios, the man in the street was greatly intrigued and “trannies” became exceedingly popular. And then Sony brought out the TR-712. This set was far ahead of any transistor radio previously on the market. This clearly showed that Sony was the absolute leader in transistor technology. Not only did it use a mixture of NPN and PNP transistors where previous transistor radios had been PNP Germanium types, but it also used new circuit techniques; neutralisation in particular. Actually, neutralisation was not new and had been used in valve sets for years but this was the first time that it was used in a transistor set. To explain, early transistors had very poor RF gain and NPN transistors were generally much worse than PNP types. Neutralisation is essentially a positive feedback arrangement which gives a boost to the high frequency gain. It demonstrated that the Japanese were making giant strides with this new technology and the resulting performance of the TR-712 was way ahead of anything that had been seen before. It must have really made engineers in western countries sit up and take notice. But from that point on, they never really caught up, in spite of the introduction of silicon epitaxial transistors and so on. Whether it was TV sets or domestic hifi equipment, Japanese manufacturers completely dominated the market in Australia and virtually everywhere else except in the iron-curtain countries where severe import restrictions were enforced. Then the Whitlam Labor government administered the coup-de-grace to the Australian electronics industry with its across the board tariff cut of 25% in 1973 and then it was virtually finished. Funnily enough, there is still quite a lot of specialised electronics manufacturing still going on in Australia and Japan is now merely a small part of the huge Asian phenomenon. Leo Simpson siliconchip.com.au