Silicon ChipViewing Radio Waves In Colour - January 2017 SILICON CHIP
  1. Outer Front Cover
  2. Contents
  3. Publisher's Letter: Pumped hydro storage is no panacea for renewables & Airbags could kill your daughter
  4. Subscriptions
  5. Feature: Pumped Storage Hydroelectricity by Dr David Maddison
  6. PartShop
  7. Feature: Viewing Radio Waves In Colour by Ross Tester
  8. Project: New SC200 Audio Amplifier by Nicholas Vinen & Leo Simpson
  9. Project: High Power DC Motor Speed Control by John Clarke
  10. Serviceman's Log: When spare parts aren't around by Dave Thompson
  11. Project: Programming the ATtiny85 With An Arduino by Lawrence Billson
  12. Product Showcase
  13. Project: El Cheapo Modules From Asia - Part 3 by Jim Rowe
  14. Project: Giving the Ultrasonic Theremin A Volume Control by Bao Smith
  15. Feature: Real-Time System Modelling by Karthik Srinivasan
  16. Feature: Set-Top Boxes Make Great (Cheap!) PVRs by Jim Rowe
  17. Vintage Radio: Pye 1951 5-Valve Model APJ-Modified by Associate Professor Graham Parslow
  18. PartShop
  19. Market Centre
  20. Advertising Index
  21. Outer Back Cover

This is only a preview of the January 2017 issue of Silicon Chip.

You can view 40 of the 104 pages in the full issue, including the advertisments.

For full access, purchase the issue for $10.00 or subscribe for access to the latest issues.

Items relevant to "New SC200 Audio Amplifier":
  • Ultra-LD Mk3/Mk4 Amplifier Power Supply PCB [01109111] (AUD $15.00)
  • New SC200 Audio Amplifier PCB [01108161] (AUD $10.00)
  • Hard-to-get parts for the SC200 Audio Amplifier Module (Component, AUD $50.00)
  • New SC200 Audio Amplifier PCB pattern (PDF download) [01108161] (Free)
Articles in this series:
  • New SC200 Audio Amplifier (January 2017)
  • New SC200 Audio Amplifier (January 2017)
  • New SC200 Audio Amplifier – Part 2 (February 2017)
  • New SC200 Audio Amplifier – Part 2 (February 2017)
  • New SC200 Audio Amplifier - Part 3 (March 2017)
  • New SC200 Audio Amplifier - Part 3 (March 2017)
Items relevant to "High Power DC Motor Speed Control":
  • High Power DC Motor Speed Control main PCB [11112161] (AUD $10.00)
  • High Power DC Motor Speed Control Mosfet PCB [11112162] (AUD $12.50)
  • PIC16F88-I/P programmed for the High Power DC Motor Speed Controller [1111216A.HEX] (Programmed Microcontroller, AUD $15.00)
  • Hard-to-get parts for the High Power DC Motor Speed Controller (Component, AUD $50.00)
  • Firmware (ASM and HEX) files for the High Power DC Motor Speed Control [1111216A.HEX] (Software, Free)
  • High Power DC Motor Speed Control PCB patterns (PDF download) [11112161/2] (Free)
Articles in this series:
  • High Power DC Motor Speed Control (January 2017)
  • High Power DC Motor Speed Control (January 2017)
  • High Power DC Motor Speed Control – Part 2 (February 2017)
  • High Power DC Motor Speed Control – Part 2 (February 2017)
Items relevant to "Programming the ATtiny85 With An Arduino":
  • Firmware (.ino) files for the Programming the ATtiny85 With An Arduino (Software, Free)
Items relevant to "El Cheapo Modules From Asia - Part 3":
  • CP2102-based USB/TTL serial converter with microUSB socket and 6-pin right-angle header (Component, AUD $5.00)
  • CP2102-based USB/TTL serial converter with microUSB socket and 6-pin right-angle header (clone version) (Component, AUD $3.00)
Articles in this series:
  • El Cheapo Modules From Asia - Part 1 (October 2016)
  • El Cheapo Modules From Asia - Part 1 (October 2016)
  • El Cheapo Modules From Asia - Part 2 (December 2016)
  • El Cheapo Modules From Asia - Part 2 (December 2016)
  • El Cheapo Modules From Asia - Part 3 (January 2017)
  • El Cheapo Modules From Asia - Part 3 (January 2017)
  • El Cheapo Modules from Asia - Part 4 (February 2017)
  • El Cheapo Modules from Asia - Part 4 (February 2017)
  • El Cheapo Modules, Part 5: LCD module with I²C (March 2017)
  • El Cheapo Modules, Part 5: LCD module with I²C (March 2017)
  • El Cheapo Modules, Part 6: Direct Digital Synthesiser (April 2017)
  • El Cheapo Modules, Part 6: Direct Digital Synthesiser (April 2017)
  • El Cheapo Modules, Part 7: LED Matrix displays (June 2017)
  • El Cheapo Modules, Part 7: LED Matrix displays (June 2017)
  • El Cheapo Modules: Li-ion & LiPo Chargers (August 2017)
  • El Cheapo Modules: Li-ion & LiPo Chargers (August 2017)
  • El Cheapo modules Part 9: AD9850 DDS module (September 2017)
  • El Cheapo modules Part 9: AD9850 DDS module (September 2017)
  • El Cheapo Modules Part 10: GPS receivers (October 2017)
  • El Cheapo Modules Part 10: GPS receivers (October 2017)
  • El Cheapo Modules 11: Pressure/Temperature Sensors (December 2017)
  • El Cheapo Modules 11: Pressure/Temperature Sensors (December 2017)
  • El Cheapo Modules 12: 2.4GHz Wireless Data Modules (January 2018)
  • El Cheapo Modules 12: 2.4GHz Wireless Data Modules (January 2018)
  • El Cheapo Modules 13: sensing motion and moisture (February 2018)
  • El Cheapo Modules 13: sensing motion and moisture (February 2018)
  • El Cheapo Modules 14: Logarithmic RF Detector (March 2018)
  • El Cheapo Modules 14: Logarithmic RF Detector (March 2018)
  • El Cheapo Modules 16: 35-4400MHz frequency generator (May 2018)
  • El Cheapo Modules 16: 35-4400MHz frequency generator (May 2018)
  • El Cheapo Modules 17: 4GHz digital attenuator (June 2018)
  • El Cheapo Modules 17: 4GHz digital attenuator (June 2018)
  • El Cheapo: 500MHz frequency counter and preamp (July 2018)
  • El Cheapo: 500MHz frequency counter and preamp (July 2018)
  • El Cheapo modules Part 19 – Arduino NFC Shield (September 2018)
  • El Cheapo modules Part 19 – Arduino NFC Shield (September 2018)
  • El cheapo modules, part 20: two tiny compass modules (November 2018)
  • El cheapo modules, part 20: two tiny compass modules (November 2018)
  • El cheapo modules, part 21: stamp-sized audio player (December 2018)
  • El cheapo modules, part 21: stamp-sized audio player (December 2018)
  • El Cheapo Modules 22: Stepper Motor Drivers (February 2019)
  • El Cheapo Modules 22: Stepper Motor Drivers (February 2019)
  • El Cheapo Modules 23: Galvanic Skin Response (March 2019)
  • El Cheapo Modules 23: Galvanic Skin Response (March 2019)
  • El Cheapo Modules: Class D amplifier modules (May 2019)
  • El Cheapo Modules: Class D amplifier modules (May 2019)
  • El Cheapo Modules: Long Range (LoRa) Transceivers (June 2019)
  • El Cheapo Modules: Long Range (LoRa) Transceivers (June 2019)
  • El Cheapo Modules: AD584 Precision Voltage References (July 2019)
  • El Cheapo Modules: AD584 Precision Voltage References (July 2019)
  • Three I-O Expanders to give you more control! (November 2019)
  • Three I-O Expanders to give you more control! (November 2019)
  • El Cheapo modules: “Intelligent” 8x8 RGB LED Matrix (January 2020)
  • El Cheapo modules: “Intelligent” 8x8 RGB LED Matrix (January 2020)
  • El Cheapo modules: 8-channel USB Logic Analyser (February 2020)
  • El Cheapo modules: 8-channel USB Logic Analyser (February 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules (May 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules (May 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules, Part 2 (June 2020)
  • New w-i-d-e-b-a-n-d RTL-SDR modules, Part 2 (June 2020)
  • El Cheapo Modules: Mini Digital Volt/Amp Panel Meters (December 2020)
  • El Cheapo Modules: Mini Digital Volt/Amp Panel Meters (December 2020)
  • El Cheapo Modules: Mini Digital AC Panel Meters (January 2021)
  • El Cheapo Modules: Mini Digital AC Panel Meters (January 2021)
  • El Cheapo Modules: LCR-T4 Digital Multi-Tester (February 2021)
  • El Cheapo Modules: LCR-T4 Digital Multi-Tester (February 2021)
  • El Cheapo Modules: USB-PD chargers (July 2021)
  • El Cheapo Modules: USB-PD chargers (July 2021)
  • El Cheapo Modules: USB-PD Triggers (August 2021)
  • El Cheapo Modules: USB-PD Triggers (August 2021)
  • El Cheapo Modules: 3.8GHz Digital Attenuator (October 2021)
  • El Cheapo Modules: 3.8GHz Digital Attenuator (October 2021)
  • El Cheapo Modules: 6GHz Digital Attenuator (November 2021)
  • El Cheapo Modules: 6GHz Digital Attenuator (November 2021)
  • El Cheapo Modules: 35MHz-4.4GHz Signal Generator (December 2021)
  • El Cheapo Modules: 35MHz-4.4GHz Signal Generator (December 2021)
  • El Cheapo Modules: LTDZ Spectrum Analyser (January 2022)
  • El Cheapo Modules: LTDZ Spectrum Analyser (January 2022)
  • Low-noise HF-UHF Amplifiers (February 2022)
  • Low-noise HF-UHF Amplifiers (February 2022)
  • A Gesture Recognition Module (March 2022)
  • A Gesture Recognition Module (March 2022)
  • Air Quality Sensors (May 2022)
  • Air Quality Sensors (May 2022)
  • MOS Air Quality Sensors (June 2022)
  • MOS Air Quality Sensors (June 2022)
  • PAS CO2 Air Quality Sensor (July 2022)
  • PAS CO2 Air Quality Sensor (July 2022)
  • Particulate Matter (PM) Sensors (November 2022)
  • Particulate Matter (PM) Sensors (November 2022)
  • Heart Rate Sensor Module (February 2023)
  • Heart Rate Sensor Module (February 2023)
  • UVM-30A UV Light Sensor (May 2023)
  • UVM-30A UV Light Sensor (May 2023)
  • VL6180X Rangefinding Module (July 2023)
  • VL6180X Rangefinding Module (July 2023)
  • pH Meter Module (September 2023)
  • pH Meter Module (September 2023)
  • 1.3in Monochrome OLED Display (October 2023)
  • 1.3in Monochrome OLED Display (October 2023)
  • 16-bit precision 4-input ADC (November 2023)
  • 16-bit precision 4-input ADC (November 2023)
  • 1-24V USB Power Supply (October 2024)
  • 1-24V USB Power Supply (October 2024)
  • 14-segment, 4-digit LED Display Modules (November 2024)
  • 0.91-inch OLED Screen (November 2024)
  • 0.91-inch OLED Screen (November 2024)
  • 14-segment, 4-digit LED Display Modules (November 2024)
  • The Quason VL6180X laser rangefinder module (January 2025)
  • TCS230 Colour Sensor (January 2025)
  • The Quason VL6180X laser rangefinder module (January 2025)
  • TCS230 Colour Sensor (January 2025)
  • Using Electronic Modules: 1-24V Adjustable USB Power Supply (February 2025)
  • Using Electronic Modules: 1-24V Adjustable USB Power Supply (February 2025)
Items relevant to "Giving the Ultrasonic Theremin A Volume Control":
  • Firmware (.ino and .c) files for Giving the Ultrasonic Theremin a Volume Control (Software, Free)
Articles in this series:
  • Arduino-Based Digital Theremin (December 2016)
  • Arduino-Based Digital Theremin (December 2016)
  • Giving the Ultrasonic Theremin A Volume Control (January 2017)
  • Giving the Ultrasonic Theremin A Volume Control (January 2017)

Purchase a printed copy of this issue for $10.00.

“Viewing” Radio Waves in Colour By Ross Tester from billions of years ago Imagine if you were able to “see” radio waves as they traversed the huge distances of space. A research team is using a new array in the Western Australian desert to not only view radio waves but assign them colours. T o most people in radio and electronics, frequencies above 50MHz are regarded as very high; indeed, by definition the VHF spectrum starts at 30MHz, with the Ultra High Frequency bands starting at 300MHz. To astro-physicists, 50-350MHz are regarded as low frequencies but are an increasingly important spectrum 26  Silicon Chip with a large amount of research into this band being done at installations around the world. By capturing the unbelievably feint radio signals emitted by stars and other celestial bodies at the far reaches of our (Milky Way) galaxy and beyond, they’re looking for clues into how those bodies began – countless millions (or billions) of years ago – long before our Earth had evolved. Here in Australia, the focus of such research is the Murchison Widefield Array or MWA, (a tiny section of which is shown above). This $50 million radio telescope is located at a remote site northeast of Geraldton, Western Australia. The MWA observes low-frequency radio waves (between 70 and 320 MHz) siliconchip.com.au and was the first of the three Square Kilometre Array (SKA) precursors to be completed. A consortium of 13 partner institutions from four countries (Australia, USA, India and New Zealand) has financed the development, construction, commissioning and operations of the facility. Since commencing operations in mid 2013 the consortium has grown to include new partners from Canada and Japan. Key science for the MWA ranges from the search for red-shifted HI (neural hydrogen) signals from the Epoch of Reionisation to wide-field searches for transient and variable objects (including pulsars and fast radio bursts), wide-field galactic and extra-galactic surveys, plus solar and heliospheric science. Colour views The research is being led by Dr Natasha Hurley-Walker, of Curtin University (Perth) and the International Centre for Radio Astronomy Research (ICRAR). What makes Dr Hurley-Walker and her team’s research of interest to much more than the radio astronomy community is their cataloging of 300,000 galaxies in glorious living colour – in other words, what the human eye would “see” if it could indeed view radio waves. It’s given the moniker of “GLEAM” – GaLactic and Extra-galactic Allsky MWA. In other words, the Murchison radio telescope is not simply looking into the far-flung reaches of our own Milky Way galaxy, it’s looking far beyond, to the limit of currently available technology. Normally a radio wave would just be noted as that – a radio wave, with a certain frequency and perhaps some unusual characteristics. “The human eye sees by comparing brightness in three different primary colours – red, green and blue,” Dr Hurley-Walker said. “GLEAM does rather better than that, viewing the sky in 20 primary colours.” “That’s much better than we humans can manage and it even beats the very best in the animal kingdom, the mantis shrimp, which can see 12 different primary colours,” she said. GLEAM is a large-scale, high-resolution survey of the radio sky, obsiliconchip.com.au serving radio waves that have been travelling through space – some for billions of years. The more distant the source of the radio waves, the longer they have taken to get to Earth and be detected “Our team is using this survey to find out what happens when clusters of galaxies collide,” Dr HurleyWalker said. “We’re also able to see the remnants of explosions from the most ancient stars in our galaxy, and find the first and last gasps of supermassive black holes.” GLEAM is one of the biggest radio surveys of the sky ever assembled, with an enormous area of the sky being scanned. Large sky surveys like this are extremely valuable to scientists and they’re used across many areas of astrophysics, often in ways the original researchers could never have imagined. Completing the GLEAM survey with the MWA is a big step on the path to SKA-low, the low frequency part of the international Square Kilometre Array (SKA) radio telescope to be built in Australia in the coming years. The SKA The Square Kilometre Array project is an international effort to build the world’s largest radio telescope, led by SKA Organisation based at the Jodrell Bank Observatory in England. Co-located primarily in South Africa and Western Australia, the SKA will be a collection of hundreds of thousands of radio antennas with a combined collecting area equivalent to approximately one million square metres, or one square kilometre. The SKA will conduct transformational science to improve our understanding of the Universe and the laws of fundamental physics, monitoring the sky in unprecedented detail and mapping it hundreds of times faster than any current facility. (SILICON CHIP featured the SKA project in the December 2011 issue and again in the July 2012 issue). Acknowlegement: Much of the information in this feature came courtesy of Dr Natasha Hurley-Walker and the GLEAM team. (See www. icrar.org/gleam). Ever wondered what radio waves from space would look like if you could see them? Try the applet http://gleamoscope.icrar.org/ These views are of the same section of sky, through the Milky Way galaxy and beyond. SC January 2017  27