Silicon ChipBusiness energy use can be greatly reduced - June 2007 SILICON CHIP
  1. Outer Front Cover
  2. Contents
  3. Publisher's Letter: Business energy use can be greatly reduced
  4. Feature: VAF’s New Soundwall by Ross Tester
  5. Feature: Turntables – Give ’em A Spin; Pt.2 by Barrie Smith
  6. Review: ADS Technologies "Instant Music" by Silicon Chip
  7. Project: 20W Class-A Amplifier Module; Pt.2 by Leo Simpson
  8. Project: A Knock Detector For The Programmable Ignition by John Clarke
  9. Project: Versatile 4-Input Mixer With Tone Controls by Jim Rowe
  10. Project: Fun With The New PICAXE 14-M by Stan Swan
  11. Feature: The Latest PICAXE Developments by Clive Seager
  12. Project: Frequency-Activated Switch For Cars by John Clarke & Julian Edgar
  13. Feature: A Flying Visit To CeBIT Australia 2007 by Ross Tester
  14. Vintage Radio: DC-To-AC Inverters From The Valve Era by Rodney Champness
  15. Book Store
  16. Advertising Index

This is only a preview of the June 2007 issue of Silicon Chip.

You can view 35 of the 104 pages in the full issue, including the advertisments.

For full access, purchase the issue for $10.00 or subscribe for access to the latest issues.

Articles in this series:
  • Turntables – Give ’em A Spin (May 2007)
  • Turntables – Give ’em A Spin (May 2007)
  • Turntables – Give ’em A Spin; Pt.2 (June 2007)
  • Turntables – Give ’em A Spin; Pt.2 (June 2007)
Items relevant to "20W Class-A Amplifier Module; Pt.2":
  • Preamp & Remote Volume Control PCB for the Ultra-LD Mk3 [01111111] (AUD $30.00)
  • Speaker Protection and Muting Module PCB [01207071] (AUD $17.50)
  • 20W Class-A Amplifier Power Supply PCB [01105074] (AUD $20.00)
  • 20W Class-A Amplifier Module PCB, left channel [01105071] (AUD $15.00)
  • 20W Class-A Amplifier Module PCB, right channel [01105072] (AUD $15.00)
  • PIC16F88-I/P programmed for the Low Noise Stereo Preamplifier with Remote Volume Control (Programmed Microcontroller, AUD $15.00)
  • PIC16F88 firmware and source code for the Low Noise Preamplifier with Remote Volume Control (Software, Free)
  • Speaker Protector and Muting Module PCB pattern (PDF download) [01207071] (Free)
  • 20W Class A Low Noise Stereo Preamplifier/Remote Volume Control PCB pattern (PDF download) [01208071] (Free)
  • 20W Class A Amplifier Module PCB patterns (PDF download) [01105071/2] (Free)
  • 20W Class A Amplifier Power Supply PCB pattern (PDF download) [01105073] (Free)
Articles in this series:
  • A 20W Class-A Amplifier Module (May 2007)
  • A 20W Class-A Amplifier Module (May 2007)
  • 20W Class-A Amplifier Module; Pt.2 (June 2007)
  • 20W Class-A Amplifier Module; Pt.2 (June 2007)
  • 20W Class-A Amplifier Module; Pt.3 (July 2007)
  • 20W Class-A Amplifier Module; Pt.3 (July 2007)
  • 20W Class-A Amplifier Module; Pt.4 (August 2007)
  • 20W Class-A Amplifier Module; Pt.4 (August 2007)
  • Building The 20W Stereo Class-A Amplifier; Pt.5 (September 2007)
  • Building The 20W Stereo Class-A Amplifier; Pt.5 (September 2007)
Items relevant to "A Knock Detector For The Programmable Ignition":
  • Programmable Ignition System main PCB [05104071] (AUD $10.00)
  • Programmable Ignition System Trigger Module PCB [05104072] (AUD $5.00)
  • Programmable Ignition System Hand Controller PCB [05104073] (AUD $10.00)
  • PIC16F88-E/P programmed for the Programmable Ignition System [ignprgm.hex] (Programmed Microcontroller, AUD $15.00)
  • PIC16F88 firmware and source code for the Programmable Ignition System (Software, Free)
  • Sample timing maps for the Programmable Ignition System (Software, Free)
  • Programmable Ignition System PCB patterns (PDF download) [05104071/2/3] (Free)
  • Programmable Ignition System front panel artwork (PDF download) (Free)
  • Knock Detector PCB [05106071] (AUD $7.50)
  • Knock Detector PCB pattern (PDF download) [05106071] (Free)
Articles in this series:
  • Programmable Ignition System For Cars; Pt.1 (March 2007)
  • Programmable Ignition System For Cars; Pt.1 (March 2007)
  • Programmable Ignition System For Cars; Pt.2 (April 2007)
  • Programmable Ignition System For Cars; Pt.2 (April 2007)
  • Programmable Ignition System For Cars; Pt.3 (May 2007)
  • Programmable Ignition System For Cars; Pt.3 (May 2007)
  • A Knock Detector For The Programmable Ignition (June 2007)
  • A Knock Detector For The Programmable Ignition (June 2007)
Items relevant to "Versatile 4-Input Mixer With Tone Controls":
  • Versatile 4-Input Mixer PCB pattern (PDF download) [01106071] (Free)
  • Versatile 4-Input Mixer panel artwork (PDF download) (Free)
Items relevant to "Fun With The New PICAXE 14-M":
  • PICAXE-14M BASIC source code for "Fun with the new PICAXE-14M" (Software, Free)
Items relevant to "Frequency-Activated Switch For Cars":
  • Frequency Switch PCB pattern (PDF download) [05car051] (Free)

Purchase a printed copy of this issue for $10.00.

SILICON CHIP www.siliconchip.com.au Publisher & Editor-in-Chief Leo Simpson, B.Bus., FAICD Production Manager Greg Swain, B.Sc.(Hons.) Technical Staff John Clarke, B.E.(Elec.) Ross Tester Jim Rowe, B.A., B.Sc, VK2ZLO Photography Ross Tester Reader Services Ann Morris Advertising Enquiries Glyn Smith Phone (02) 9939 3295 Mobile 0431 792 293 glyn<at>siliconchip.com.au Regular Contributors Brendan Akhurst Rodney Champness, VK3UG Kevin Poulter Mike Sheriff, B.Sc, VK2YFK Stan Swan SILICON CHIP is published 12 times a year by Silicon Chip Publications Pty Ltd. ACN 003 205 490. ABN 49 003 205 490 All material copyright ©. No part of this publication may be reproduced without the written consent of the publisher. Printing: Hannanprint, Noble Park, Victoria. Distribution: Network Distribution Company. Subscription rates: $89.50 per year in Australia. For overseas rates, see the subscription page in this issue. Editorial office: Unit 1, 234 Harbord Rd, Brookvale, NSW 2100. Postal address: PO Box 139, Collaroy Beach, NSW 2097. Phone (02) 9939 3295. Fax (02) 9939 2648. E-mail: silicon<at>siliconchip.com.au ISSN 1030-2662 * Recommended and maximum price only. 4  Silicon Chip Publisher’s Letter Business energy use can be greatly reduced There has been much derision of the emissions reduction target recently set by the Leader of the Opposition, Kevin Rudd. The target of a 60% reduction by the year 2050 may seem steep, particularly as the Australian economy and population will undoubtedly grow considerably over the next four decades. But is a target of a 60% cut really so silly? The typical domestic consumer may well be able to reduce energy usage by that amount over a decade or so but will business be able to do the same? That is a huge topic and the first question that must be asked is: will the business still be able to grow and increase employment? If employment is to increase, it normally means that energy use must also increase. But say we decree that a business must cut its energy use per employee by 60%? Would that be feasible? The answer is: probably. However, a prerequisite for any energy cuts is that they must not reduce staff safety, comfort and productivity. I have been thinking about whether we at Silicon Chip Publications could reduce our own energy use markedly. The answer has to be that we can make major reductions, without even investing in new technology. Our building certainly has not been designed with energy conservation in mind. While the steel roof is insulated and does have a large passive extractor to vent excessive heat from the warehouse, it still needs a big airconditioner to keep the office area comfortable, particularly in summer. Hence, our main energy users are the airconditioner, office & warehouse lighting, hot water system and computers. Since moving in about 10 months ago, we have already made changes which have resulted in major energy reductions compared with the previous occupants, while not prejudicing comfort or safety in any way. For example, I had an electrician do a lot of work in fixing and updating exit lights, emergency lighting, re-tubing the lights in a separate factory warehouse and so on. While he was doing that work, I had him set back the hot water system thermostats to 60°C, which is now a Worksafe requirement. This reduces the risk of scalding, reduces power consumption and as bonus, the tanks will probably last quite a bit longer. I also had the warehouse light switching changed so that a bank of fluorescent lights did not have to be left on all day – they were normally kept on so that the kitchen and mailing areas were always lit. That amounts to a major saving in energy over a year. As well, automatic door closers were fitted to two doors so that hot or cold air from the warehouse did not blow into the airconditioned office. The warehouse roller shutter and office entrance doors (also now fitted with an automatic closer) are also kept closed all the time. Overall, such modest changes have probably cut energy use by at least 50% and we haven’t been really trying. Without drastic changes, we can probably make a further significant reduction in power consumption from the office lighting while improving overall illumination. And it should not be hard to reduce energy consumption of the computers in the future – laptops already use much less power than desktop machines. With significant cuts in energy use from lighting and computers, the summer airconditioning load will also be reduced. In winter time, there may not be much benefit but you can see that reducing energy use in the typical office is not rocket science. Have a think about your own work-place and see if it would not be equally easy to make reductions in energy use. You will probably be surprised at the possibilities. Leo Simpson siliconchip.com.au