Silicon ChipEpson’s Latest Micro-Flying Robot - October 2004 SILICON CHIP
  1. Outer Front Cover
  2. Contents
  3. Publisher's Letter: Australia's future energy options
  4. Feature: The Humble “Trannie” Turns 50 by Kevin Poulter
  5. Review: Stressless Wireless by Peter Smith
  6. Feature: Epson’s Latest Micro-Flying Robot by Silicon Chip
  7. Project: SMS Controller, Pt.1 by Peter Smith
  8. Project: RGB To Component Video Converter by Jim Rowe
  9. Feature: This new PICAXE-08M is a wee ripper! by Stan Swan
  10. Review: The Amateur Scientist 2.0 by Peter Smith
  11. Project: USB Power Injector by Jim Rowe
  12. Project: Remote Controller For Garage Doors & Gates by Oatley Electronics
  13. Vintage Radio: Those troublesome capacitors, Pt.1 by Rodney Champness
  14. Back Issues
  15. Book Store
  16. Advertising Index
  17. Outer Back Cover

This is only a preview of the October 2004 issue of Silicon Chip.

You can view 22 of the 104 pages in the full issue, including the advertisments.

For full access, purchase the issue for $10.00 or subscribe for access to the latest issues.

Articles in this series:
  • Amateur Radio (November 1987)
  • Amateur Radio (November 1987)
  • Amateur Radio (December 1987)
  • Amateur Radio (December 1987)
  • Amateur Radio (February 1988)
  • Amateur Radio (February 1988)
  • Amateur Radio (March 1988)
  • Amateur Radio (March 1988)
  • Amateur Radio (April 1988)
  • Amateur Radio (April 1988)
  • Amateur Radio (May 1988)
  • Amateur Radio (May 1988)
  • Amateur Radio (June 1988)
  • Amateur Radio (June 1988)
  • Amateur Radio (July 1988)
  • Amateur Radio (July 1988)
  • Amateur Radio (August 1988)
  • Amateur Radio (August 1988)
  • Amateur Radio (September 1988)
  • Amateur Radio (September 1988)
  • Amateur Radio (October 1988)
  • Amateur Radio (October 1988)
  • Amateur Radio (November 1988)
  • Amateur Radio (November 1988)
  • Amateur Radio (December 1988)
  • Amateur Radio (December 1988)
  • Amateur Radio (January 1989)
  • Amateur Radio (January 1989)
  • Amateur Radio (April 1989)
  • Amateur Radio (April 1989)
  • Amateur Radio (May 1989)
  • Amateur Radio (May 1989)
  • Amateur Radio (June 1989)
  • Amateur Radio (June 1989)
  • Amateur Radio (July 1989)
  • Amateur Radio (July 1989)
  • Amateur Radio (August 1989)
  • Amateur Radio (August 1989)
  • Amateur Radio (September 1989)
  • Amateur Radio (September 1989)
  • Amateur Radio (October 1989)
  • Amateur Radio (October 1989)
  • Amateur Radio (November 1989)
  • Amateur Radio (November 1989)
  • Amateur Radio (December 1989)
  • Amateur Radio (December 1989)
  • Amateur Radio (February 1990)
  • Amateur Radio (February 1990)
  • Amateur Radio (March 1990)
  • Amateur Radio (March 1990)
  • Amateur Radio (April 1990)
  • Amateur Radio (April 1990)
  • Amateur Radio (May 1990)
  • Amateur Radio (May 1990)
  • Amateur Radio (June 1990)
  • Amateur Radio (June 1990)
  • Amateur Radio (July 1990)
  • Amateur Radio (July 1990)
  • The "Tube" vs. The Microchip (August 1990)
  • The "Tube" vs. The Microchip (August 1990)
  • Amateur Radio (September 1990)
  • Amateur Radio (September 1990)
  • Amateur Radio (October 1990)
  • Amateur Radio (October 1990)
  • Amateur Radio (November 1990)
  • Amateur Radio (November 1990)
  • Amateur Radio (December 1990)
  • Amateur Radio (December 1990)
  • Amateur Radio (January 1991)
  • Amateur Radio (January 1991)
  • Amateur Radio (February 1991)
  • Amateur Radio (February 1991)
  • Amateur Radio (March 1991)
  • Amateur Radio (March 1991)
  • Amateur Radio (April 1991)
  • Amateur Radio (April 1991)
  • Amateur Radio (May 1991)
  • Amateur Radio (May 1991)
  • Amateur Radio (June 1991)
  • Amateur Radio (June 1991)
  • Amateur Radio (July 1991)
  • Amateur Radio (July 1991)
  • Amateur Radio (August 1991)
  • Amateur Radio (August 1991)
  • Amateur Radio (September 1991)
  • Amateur Radio (September 1991)
  • Amateur Radio (October 1991)
  • Amateur Radio (October 1991)
  • Amateur Radio (November 1991)
  • Amateur Radio (November 1991)
  • Amateur Radio (January 1992)
  • Amateur Radio (January 1992)
  • Amateur Radio (February 1992)
  • Amateur Radio (February 1992)
  • Amateur Radio (March 1992)
  • Amateur Radio (March 1992)
  • Amateur Radio (July 1992)
  • Amateur Radio (July 1992)
  • Amateur Radio (August 1992)
  • Amateur Radio (August 1992)
  • Amateur Radio (September 1992)
  • Amateur Radio (September 1992)
  • Amateur Radio (October 1992)
  • Amateur Radio (October 1992)
  • Amateur Radio (November 1992)
  • Amateur Radio (November 1992)
  • Amateur Radio (January 1993)
  • Amateur Radio (January 1993)
  • Amateur Radio (March 1993)
  • Amateur Radio (March 1993)
  • Amateur Radio (May 1993)
  • Amateur Radio (May 1993)
  • Amateur Radio (June 1993)
  • Amateur Radio (June 1993)
  • Amateur Radio (July 1993)
  • Amateur Radio (July 1993)
  • Amateur Radio (August 1993)
  • Amateur Radio (August 1993)
  • Amateur Radio (September 1993)
  • Amateur Radio (September 1993)
  • Amateur Radio (October 1993)
  • Amateur Radio (October 1993)
  • Amateur Radio (December 1993)
  • Amateur Radio (December 1993)
  • Amateur Radio (February 1994)
  • Amateur Radio (February 1994)
  • Amateur Radio (March 1994)
  • Amateur Radio (March 1994)
  • Amateur Radio (May 1994)
  • Amateur Radio (May 1994)
  • Amateur Radio (June 1994)
  • Amateur Radio (June 1994)
  • Amateur Radio (September 1994)
  • Amateur Radio (September 1994)
  • Amateur Radio (December 1994)
  • Amateur Radio (December 1994)
  • Amateur Radio (January 1995)
  • Amateur Radio (January 1995)
  • CB Radio Can Now Transmit Data (March 2001)
  • CB Radio Can Now Transmit Data (March 2001)
  • What's On Offer In "Walkie Talkies" (March 2001)
  • What's On Offer In "Walkie Talkies" (March 2001)
  • Stressless Wireless (October 2004)
  • Stressless Wireless (October 2004)
  • WiNRADiO: Marrying A Radio Receiver To A PC (January 2007)
  • WiNRADiO: Marrying A Radio Receiver To A PC (January 2007)
  • “Degen” Synthesised HF Communications Receiver (January 2007)
  • “Degen” Synthesised HF Communications Receiver (January 2007)
  • PICAXE-08M 433MHz Data Transceiver (October 2008)
  • PICAXE-08M 433MHz Data Transceiver (October 2008)
  • Half-Duplex With HopeRF’s HM-TR UHF Transceivers (April 2009)
  • Half-Duplex With HopeRF’s HM-TR UHF Transceivers (April 2009)
  • Dorji 433MHz Wireless Data Modules (January 2012)
  • Dorji 433MHz Wireless Data Modules (January 2012)
Items relevant to "SMS Controller, Pt.1":
  • ATmega8515 programmed for the SMS Controller (Programmed Microcontroller, AUD $15.00)
  • ATmega8515 firmware and source code for the SMS Controller (Software, Free)
  • SMS Controller PCB pattern (PDF download) [12110041] (Free)
Articles in this series:
  • SMS Controller, Pt.1 (October 2004)
  • SMS Controller, Pt.1 (October 2004)
  • SMS Controller, Pt.2 (November 2004)
  • SMS Controller, Pt.2 (November 2004)
Items relevant to "RGB To Component Video Converter":
  • RGB to Component Video Converter PCB pattern (PDF download) [07209041] (Free)
  • RGB to Component Video Converter front and rear panel artwork (PDF download) (Free)
Items relevant to "USB Power Injector":
  • USB Power Injector PCB pattern (PDF download) [07110041] (Free)
  • USB Power Injector panel artwork (PDF download) (Free)
Articles in this series:
  • Those troublesome capacitors, Pt.1 (October 2004)
  • Those troublesome capacitors, Pt.1 (October 2004)
  • Those troublesome capacitors, Pt.2 (November 2004)
  • Those troublesome capacitors, Pt.2 (November 2004)

Purchase a printed copy of this issue for $10.00.

Epson’s latest micro-flying robot Epson has successfully developed a lighter and more advanced successor to the mFR, the world’s smallest and lightest micro-flying robot (featured in SILICON CHIP, January 2004). This one is capable of independent (non-tethered) flight. T urning once again to its micromechatronics technology, Epson’s mFR-II Micro-Flying Robot also features Bluetooth wireless control and independent flight. The mFRII was first displayed at the Emerging Technology Fair, held as part of the Emerging Technology Fair in Tokyo in late August. The mFR-II is only the latest chapter in an Epson success story that began with Monsieur, a micro-robot that was listed in the Guinness Book of Records as the world’s smallest micro-robot and was put on sale in 1993. Having made micro-mechatronics one of its core technologies, the company has since created and marketed several more microrobots in the EMRoS series. April 2003 saw the introduction of 24  Silicon Chip the Monsieur II-P, a prototype microrobot that operates on the world’s thinnest micro-actuator (an ultra-thin, ultrasonic motor) and is remote-controllable via a power-saving Bluetooth module. The following November, Epson unveiled the prototype micro-flying robot mFR, which featured two ultra-thin, ultrasonic motors driving two contrarotating propellers for levitation, plus the world’s first linear-actuator stabilizing mechanism for attitude control during flight. However, the mFR prototype microrobot’s flying range was limited by the length of the power cord attaching it to an external battery. Although it was radio-controlled, it had to be kept within sight of the operator while flying. Consequently, Epson decided that the next step was to extend the flying range by developing fully wireless operation paired with independent flight capability. The main issue to be tackled with regard to wireless flight was the need to combine lighter weight with greater dynamic lift. Epson made the robot lighter by developing a new gyro-sensor that is one-fifth the weight of its predecessor, making it the world’s smallest and lightest gyro-sensor. Also helping to shed weight is the high-density mounting technology used to package the microrobot’s two micro-controllers including the Epsonoriginal S1C33-family 32-bit RISC. Dynamic lift was boosted 30% by introducing more powerful ultra-thin siliconchip.com.au ultrasonic motors and newly designed, optimally shaped main rotors. For the challenge of independent flight, Epson brought its many years of micromechatronics experience to bear in realizing the development of a linear actuator with faster response time and a high-precision attitude control mechanism, along with a flight path control and independent flight system (primarily for hovering). To top it off, Epson added an image sensor unit that can capture and transmit aerial images via a Bluetooth wireless connection to a monitor on land and devised two LED lamps as a means of signaling. Epson was assisted by Chiba University’s Nonami (Control and Robotics) Laboratory in developing the control system for independent flight. The company also received advice on the rotor design from the Kawachi (Aeronautics and Astronautics) Laboratory at the University of Tokyo. The key concept behind Epson’s R&D efforts in micro-flying robots has been to expand the horizons of microrobot activities from two-dimensional to three-dimensional space. Now, with the successful implemen- mFR-II Specifications Power: 4.2V Power consumption: 3.5W Dimensions Diameter: About 136mm Height: About 85mm Maximum lift: About 17g/f Flight time: About 3 minutes Weight (no battery): 8.6g Weight with battery: 12.3g Individual component weights:   Battery 3.7g    Rotary Actuator Unit 2.9g    Linear Actuator Unit 0.6g   Control Circuitry 3.1g   Frame 2.0g tation of Bluetooth communications and independent flight in the FR-II, Epson has added a new dimension to micro-robotics while greatly expanding the potential range of micro-robot applications by incorporating image capture and transmission functions. For more information, visit the Epson website, www.epson.co.jp SC Want really bright LEDs? We have the best value, brightest LEDs available in Australia! Check these out: Luxeon 1 and 5 watt LEDs All colours available, with or without attached optics, as low as $10 each Lumileds Superflux LEDs These are 7.6mm square and can be driven at up to 50mA continuously. •Red and amber: $2 each •Blue, green and cyan: $3 each Asian Superflux LEDs Same size and current as the Lumileds units, almost the same light output, but a fraction of the price. •Red and amber: Just 50 cents each! •Blue, green, aqua and white: $1 each. Go to www.ata.org.au and check out our webshop or call us on (03)9388 9311. Stabiliser Rotors Rotary actuators (contra-rotating) Linear Actuator (dual axis) Control Circuitry Polymer-Lithium Secondary Battery siliconchip.com.au Frame October 2004  25