Silicon ChipDC power in the home; it could be made to work - November 1999 SILICON CHIP
  1. Outer Front Cover
  2. Contents
  3. Publisher's Letter: DC power in the home; it could be made to work
  4. Feature: USB: Hassle-Free Connections To Your PC by Peter Smith
  5. Project: A Speed Alarm For Cars; Pt.1 by John Clarke
  6. Book Store
  7. Serviceman's Log: Price isn't everything by The TV Serviceman
  8. Project: Multi-Colour LED Christmas Tree by Les Grant
  9. Feature: Electric Lighting; Pt.15 by Julian Edgar
  10. Product Showcase
  11. Feature: Setting Up An Email Server by Peter Smith
  12. Project: Build An Intercom Station Expander by Paul Hoad
  13. Vintage Radio: The case of the disappearing TV sets by Rodney Champness
  14. Project: Foldback Loudspeaker System For Musicians by John Clarke
  15. Project: Railpower Model Train Controller; Pt.2 by John Clarke & Leo Simpson
  16. Order Form
  17. Notes & Errata
  18. Market Centre
  19. Advertising Index
  20. Outer Back Cover

This is only a preview of the November 1999 issue of Silicon Chip.

You can view 34 of the 96 pages in the full issue, including the advertisments.

For full access, purchase the issue for $10.00 or subscribe for access to the latest issues.

Items relevant to "A Speed Alarm For Cars; Pt.1":
  • PIC16F84(A)-04/P programmed for the Speed Alarm for Cars [SPEED254.HEX] (Programmed Microcontroller, AUD $10.00)
  • PIC16F84 firmware and source code for the Speed Alarm for Cars [SPEED254.HEX] (Software, Free)
  • Speed Alarm for Cars PCB patterns (PDF download) [05310991/2] (Free)
  • Speed Alarm for Cars panel artwork (PDF download) (Free)
Articles in this series:
  • A Speed Alarm For Cars; Pt.1 (November 1999)
  • A Speed Alarm For Cars; Pt.1 (November 1999)
  • Speed Alarm For Cars, Pt.2 (December 1999)
  • Speed Alarm For Cars, Pt.2 (December 1999)
Articles in this series:
  • Understanding Electric Lighting; Pt.1 (November 1997)
  • Understanding Electric Lighting; Pt.1 (November 1997)
  • Understanding Electric Lighting; Pt.2 (December 1997)
  • Understanding Electric Lighting; Pt.2 (December 1997)
  • Understanding Electric Lighting; Pt.3 (January 1998)
  • Understanding Electric Lighting; Pt.3 (January 1998)
  • Understanding Electric Lighting; Pt.4 (February 1998)
  • Understanding Electric Lighting; Pt.4 (February 1998)
  • Understanding Electric Lighting; Pt.5 (March 1998)
  • Understanding Electric Lighting; Pt.5 (March 1998)
  • Understanding Electric Lighting; Pt.6 (April 1998)
  • Understanding Electric Lighting; Pt.6 (April 1998)
  • Understanding Electric Lighting; Pt.7 (June 1998)
  • Understanding Electric Lighting; Pt.7 (June 1998)
  • Understanding Electric Lighting; Pt.8 (July 1998)
  • Understanding Electric Lighting; Pt.8 (July 1998)
  • Electric Lighting; Pt.9 (November 1998)
  • Electric Lighting; Pt.9 (November 1998)
  • Electric Lighting; Pt.10 (January 1999)
  • Electric Lighting; Pt.10 (January 1999)
  • Electric Lighting; Pt.11 (February 1999)
  • Electric Lighting; Pt.11 (February 1999)
  • Electric Lighting; Pt.12 (March 1999)
  • Electric Lighting; Pt.12 (March 1999)
  • Electric Lighting; Pt.13 (April 1999)
  • Electric Lighting; Pt.13 (April 1999)
  • Electric Lighting, Pt.14 (August 1999)
  • Electric Lighting, Pt.14 (August 1999)
  • Electric Lighting; Pt.15 (November 1999)
  • Electric Lighting; Pt.15 (November 1999)
  • Electric Lighting; Pt.16 (December 1999)
  • Electric Lighting; Pt.16 (December 1999)
Items relevant to "Railpower Model Train Controller; Pt.2":
  • Railpower PCB pattern (PDF download) [09308991] (Free)
  • Railpower panel artwork (PDF download) (Free)
Articles in this series:
  • Build The Railpower; Pt.1 (October 1999)
  • Build The Railpower; Pt.1 (October 1999)
  • Railpower Model Train Controller; Pt.2 (November 1999)
  • Railpower Model Train Controller; Pt.2 (November 1999)
  • Railpower Model Train Controller; Pt.3 (December 1999)
  • Railpower Model Train Controller; Pt.3 (December 1999)

Purchase a printed copy of this issue for $10.00.

PUBLISHER’S LETTER www.siliconchip.com.au Publisher & Editor-in-Chief Leo Simpson, B.Bus., FAICD Production Manager Greg Swain, B.Sc.(Hons.) Technical Staff John Clarke, B.E.(Elec.) Peter Smith Ross Tester Rick Walters Reader Services Ann Jenkinson Advertising Enquiries Rick Winkler Phone (02) 9979 5644 Fax (02) 9979 6503 Mobile: 0414 34 6669 Regular Contributors Brendan Akhurst Rodney Champness Garry Cratt, VK2YBX Julian Edgar, Dip.T.(Sec.), B.Ed Mike Sheriff, B.Sc, VK2YFK Philip Watson, MIREE, VK2ZPW Bob Young SILICON CHIP is published 12 times a year by Silicon Chip Publications Pty Ltd. A.C.N. 003 205 490. All material copyright ©. No part of this publication may be reproduced without the written consent of the publisher. Printing: Macquarie Print, Dubbo, NSW. Distribution: Network Distribution Company. Subscription rates: $69.50 per year in Australia. For overseas rates, see the subscription page in this issue. Editorial & advertising offices: Unit 8, 101 Darley St, Mona Vale, NSW 2103. Postal address: PO Box 139, Collaroy Beach, NSW 2097. Phone (02) 9979 5644. Fax (02) 9979 6503. E-mail: silchip<at>siliconchip.com.au ISSN 1030-2662 * Recommended and maximum price only. 2  Silicon Chip DC power in the home; it could be made to work Last month’s Publisher’s Letter about the possibility of DC power in the home triggered off quite a response from readers. Some raised the obvious safety issues of the difficulty of safely switching high voltage DC and the possibility that a DC shock can be more dangerous than AC. These drawbacks must be admitted. Others though, saw the potential in the idea and went on to expand the concept. My feeling is that most people have such a reliable 240V AC supply that they would never contemplate ever having any other system; it works, why fix it? For those that do have an unreliable mains supply, and I include myself in that category, the occasional inconvenience might be extremely irritating but it would not justify the in­vestment and time necessary to eliminate it. And whether a DC power system would be the way to go would probably be a moot point. However, for those who are in remote locations far away from any mains power supply, a combination high and low voltage DC system based on solar arrays could be made to work. As one of our readers points out in the Mailbag pages this month, quite a few appliances could be made to work on DC. But would it be safe? Now that the problem of high voltage DC switching has been highlighted, could be it be overcome? The answer is yes. But it would not be necessary to have large mechanical power switches to turn the appliances, lights or whatever, on and off. The logical approach would be to have electronic switching which could cope with high voltage DC and AC. This would be pretty straightfor­ward, when you think about it. After all, many appliances these days do not rely on me­chanical on/off switches; they use electronic switching. Virtual­ly any appliance which comes with a remote control uses electron­ic switching. The same point applies to microwave ovens, many washing machines and dishwashers. An electronic switch based on a power Mosfet or IGBT (insulated gate bipolar transistor) could be made to handle the switching job for AC and DC. So a compact, reliable and rugged power switch is not an insurmountable prob­lem. Nor is the problem of automatic degaussing for TVs and computer monitors running from DC insoluble - there has to be an electronic solution. So as I remarked last month, there is no reason why most appliances could not be made to run on 250V DC. Will it ever happen? Probably not. To be realistic, if you were faced with providing power in a remote location, the most practical approach would probably be to power as many appliances as possible at 12V DC and for those that cannot be run from low voltage DC, use a 12V DC to 240VAC inverter which would only run when an appliance was switched on. Many of the bigger inverters already have an auto-sensing feature and it is very worthwhile because it stops the inefficiency of running inverters continuously. Leo Simpson