Silicon ChipAmateur Radio - November 1991 SILICON CHIP
  1. Outer Front Cover
  2. Contents
  3. Publisher's Letter: Wiring in older houses can be dangerous
  4. Project: Battery Charger For Solar Panels by Steve Calder / Hycal Electronics
  5. Order Form
  6. Project: Build A Colour TV Pattern Generator, Pt.1 by John Clarke
  7. Project: Flashing Alarm Light For Cars by Syd McKitrick
  8. Project: Digital Altimeter For Gliders & Ultralights, Pt.3 by John Clarke
  9. Serviceman's Log: A very circuitous exercise by The TV Serviceman
  10. Feature: Amateur Radio by Garry Cratt, VK2YBX
  11. Project: Build A Talking Voltmeter For Your PC, Pt.2 by Darren Yates
  12. Feature: Computer Bits by Jennifer Bonnitcha
  13. Project: Error Analyser For CD Players, Pt.3 by Stephen McBride
  14. Vintage Radio: A simple junkbox 2-valve receiver by John Hill
  15. Feature: The Story Of Electrical Energy; Pt.15 by Bryan Maher
  16. Back Issues
  17. Market Centre
  18. Outer Back Cover

This is only a preview of the November 1991 issue of Silicon Chip.

You can view 46 of the 96 pages in the full issue, including the advertisments.

For full access, purchase the issue for $10.00 or subscribe for access to the latest issues.

Articles in this series:
  • Build A Colour TV Pattern Generator, Pt.1 (November 1991)
  • Build A Colour TV Pattern Generator, Pt.1 (November 1991)
  • Build A Colour TV Pattern Generator, Pt.2 (December 1991)
  • Build A Colour TV Pattern Generator, Pt.2 (December 1991)
Articles in this series:
  • Digital Altimeter For Gliders & Ultralights, Pt.1 (September 1991)
  • Digital Altimeter For Gliders & Ultralights, Pt.1 (September 1991)
  • Digital Altimeter For Gliders & Ultralights, Pt.2 (October 1991)
  • Digital Altimeter For Gliders & Ultralights, Pt.2 (October 1991)
  • Digital Altimeter For Gliders & Ultralights, Pt.3 (November 1991)
  • Digital Altimeter For Gliders & Ultralights, Pt.3 (November 1991)
Articles in this series:
  • Amateur Radio (November 1987)
  • Amateur Radio (November 1987)
  • Amateur Radio (December 1987)
  • Amateur Radio (December 1987)
  • Amateur Radio (February 1988)
  • Amateur Radio (February 1988)
  • Amateur Radio (March 1988)
  • Amateur Radio (March 1988)
  • Amateur Radio (April 1988)
  • Amateur Radio (April 1988)
  • Amateur Radio (May 1988)
  • Amateur Radio (May 1988)
  • Amateur Radio (June 1988)
  • Amateur Radio (June 1988)
  • Amateur Radio (July 1988)
  • Amateur Radio (July 1988)
  • Amateur Radio (August 1988)
  • Amateur Radio (August 1988)
  • Amateur Radio (September 1988)
  • Amateur Radio (September 1988)
  • Amateur Radio (October 1988)
  • Amateur Radio (October 1988)
  • Amateur Radio (November 1988)
  • Amateur Radio (November 1988)
  • Amateur Radio (December 1988)
  • Amateur Radio (December 1988)
  • Amateur Radio (January 1989)
  • Amateur Radio (January 1989)
  • Amateur Radio (April 1989)
  • Amateur Radio (April 1989)
  • Amateur Radio (May 1989)
  • Amateur Radio (May 1989)
  • Amateur Radio (June 1989)
  • Amateur Radio (June 1989)
  • Amateur Radio (July 1989)
  • Amateur Radio (July 1989)
  • Amateur Radio (August 1989)
  • Amateur Radio (August 1989)
  • Amateur Radio (September 1989)
  • Amateur Radio (September 1989)
  • Amateur Radio (October 1989)
  • Amateur Radio (October 1989)
  • Amateur Radio (November 1989)
  • Amateur Radio (November 1989)
  • Amateur Radio (December 1989)
  • Amateur Radio (December 1989)
  • Amateur Radio (February 1990)
  • Amateur Radio (February 1990)
  • Amateur Radio (March 1990)
  • Amateur Radio (March 1990)
  • Amateur Radio (April 1990)
  • Amateur Radio (April 1990)
  • Amateur Radio (May 1990)
  • Amateur Radio (May 1990)
  • Amateur Radio (June 1990)
  • Amateur Radio (June 1990)
  • Amateur Radio (July 1990)
  • Amateur Radio (July 1990)
  • The "Tube" vs. The Microchip (August 1990)
  • The "Tube" vs. The Microchip (August 1990)
  • Amateur Radio (September 1990)
  • Amateur Radio (September 1990)
  • Amateur Radio (October 1990)
  • Amateur Radio (October 1990)
  • Amateur Radio (November 1990)
  • Amateur Radio (November 1990)
  • Amateur Radio (December 1990)
  • Amateur Radio (December 1990)
  • Amateur Radio (January 1991)
  • Amateur Radio (January 1991)
  • Amateur Radio (February 1991)
  • Amateur Radio (February 1991)
  • Amateur Radio (March 1991)
  • Amateur Radio (March 1991)
  • Amateur Radio (April 1991)
  • Amateur Radio (April 1991)
  • Amateur Radio (May 1991)
  • Amateur Radio (May 1991)
  • Amateur Radio (June 1991)
  • Amateur Radio (June 1991)
  • Amateur Radio (July 1991)
  • Amateur Radio (July 1991)
  • Amateur Radio (August 1991)
  • Amateur Radio (August 1991)
  • Amateur Radio (September 1991)
  • Amateur Radio (September 1991)
  • Amateur Radio (October 1991)
  • Amateur Radio (October 1991)
  • Amateur Radio (November 1991)
  • Amateur Radio (November 1991)
  • Amateur Radio (January 1992)
  • Amateur Radio (January 1992)
  • Amateur Radio (February 1992)
  • Amateur Radio (February 1992)
  • Amateur Radio (March 1992)
  • Amateur Radio (March 1992)
  • Amateur Radio (July 1992)
  • Amateur Radio (July 1992)
  • Amateur Radio (August 1992)
  • Amateur Radio (August 1992)
  • Amateur Radio (September 1992)
  • Amateur Radio (September 1992)
  • Amateur Radio (October 1992)
  • Amateur Radio (October 1992)
  • Amateur Radio (November 1992)
  • Amateur Radio (November 1992)
  • Amateur Radio (January 1993)
  • Amateur Radio (January 1993)
  • Amateur Radio (March 1993)
  • Amateur Radio (March 1993)
  • Amateur Radio (May 1993)
  • Amateur Radio (May 1993)
  • Amateur Radio (June 1993)
  • Amateur Radio (June 1993)
  • Amateur Radio (July 1993)
  • Amateur Radio (July 1993)
  • Amateur Radio (August 1993)
  • Amateur Radio (August 1993)
  • Amateur Radio (September 1993)
  • Amateur Radio (September 1993)
  • Amateur Radio (October 1993)
  • Amateur Radio (October 1993)
  • Amateur Radio (December 1993)
  • Amateur Radio (December 1993)
  • Amateur Radio (February 1994)
  • Amateur Radio (February 1994)
  • Amateur Radio (March 1994)
  • Amateur Radio (March 1994)
  • Amateur Radio (May 1994)
  • Amateur Radio (May 1994)
  • Amateur Radio (June 1994)
  • Amateur Radio (June 1994)
  • Amateur Radio (September 1994)
  • Amateur Radio (September 1994)
  • Amateur Radio (December 1994)
  • Amateur Radio (December 1994)
  • Amateur Radio (January 1995)
  • Amateur Radio (January 1995)
  • CB Radio Can Now Transmit Data (March 2001)
  • CB Radio Can Now Transmit Data (March 2001)
  • What's On Offer In "Walkie Talkies" (March 2001)
  • What's On Offer In "Walkie Talkies" (March 2001)
  • Stressless Wireless (October 2004)
  • Stressless Wireless (October 2004)
  • WiNRADiO: Marrying A Radio Receiver To A PC (January 2007)
  • WiNRADiO: Marrying A Radio Receiver To A PC (January 2007)
  • “Degen” Synthesised HF Communications Receiver (January 2007)
  • “Degen” Synthesised HF Communications Receiver (January 2007)
  • PICAXE-08M 433MHz Data Transceiver (October 2008)
  • PICAXE-08M 433MHz Data Transceiver (October 2008)
  • Half-Duplex With HopeRF’s HM-TR UHF Transceivers (April 2009)
  • Half-Duplex With HopeRF’s HM-TR UHF Transceivers (April 2009)
  • Dorji 433MHz Wireless Data Modules (January 2012)
  • Dorji 433MHz Wireless Data Modules (January 2012)
Articles in this series:
  • Build A Talking Voltmeter For Your PC, Pt.1 (October 1991)
  • Build A Talking Voltmeter For Your PC, Pt.1 (October 1991)
  • Build A Talking Voltmeter For Your PC, Pt.2 (November 1991)
  • Build A Talking Voltmeter For Your PC, Pt.2 (November 1991)
Articles in this series:
  • Computer Bits (July 1989)
  • Computer Bits (July 1989)
  • Computer Bits (August 1989)
  • Computer Bits (August 1989)
  • Computer Bits (September 1989)
  • Computer Bits (September 1989)
  • Computer Bits (October 1989)
  • Computer Bits (October 1989)
  • Computer Bits (November 1989)
  • Computer Bits (November 1989)
  • Computer Bits (January 1990)
  • Computer Bits (January 1990)
  • Computer Bits (April 1990)
  • Computer Bits (April 1990)
  • Computer Bits (October 1990)
  • Computer Bits (October 1990)
  • Computer Bits (November 1990)
  • Computer Bits (November 1990)
  • Computer Bits (December 1990)
  • Computer Bits (December 1990)
  • Computer Bits (January 1991)
  • Computer Bits (January 1991)
  • Computer Bits (February 1991)
  • Computer Bits (February 1991)
  • Computer Bits (March 1991)
  • Computer Bits (March 1991)
  • Computer Bits (April 1991)
  • Computer Bits (April 1991)
  • Computer Bits (May 1991)
  • Computer Bits (May 1991)
  • Computer Bits (June 1991)
  • Computer Bits (June 1991)
  • Computer Bits (July 1991)
  • Computer Bits (July 1991)
  • Computer Bits (August 1991)
  • Computer Bits (August 1991)
  • Computer Bits (September 1991)
  • Computer Bits (September 1991)
  • Computer Bits (October 1991)
  • Computer Bits (October 1991)
  • Computer Bits (November 1991)
  • Computer Bits (November 1991)
  • Computer Bits (December 1991)
  • Computer Bits (December 1991)
  • Computer Bits (January 1992)
  • Computer Bits (January 1992)
  • Computer Bits (February 1992)
  • Computer Bits (February 1992)
  • Computer Bits (March 1992)
  • Computer Bits (March 1992)
  • Computer Bits (May 1992)
  • Computer Bits (May 1992)
  • Computer Bits (June 1992)
  • Computer Bits (June 1992)
  • Computer Bits (July 1992)
  • Computer Bits (July 1992)
  • Computer Bits (September 1992)
  • Computer Bits (September 1992)
  • Computer Bits (October 1992)
  • Computer Bits (October 1992)
  • Computer Bits (November 1992)
  • Computer Bits (November 1992)
  • Computer Bits (December 1992)
  • Computer Bits (December 1992)
  • Computer Bits (February 1993)
  • Computer Bits (February 1993)
  • Computer Bits (April 1993)
  • Computer Bits (April 1993)
  • Computer Bits (May 1993)
  • Computer Bits (May 1993)
  • Computer Bits (June 1993)
  • Computer Bits (June 1993)
  • Computer Bits (October 1993)
  • Computer Bits (October 1993)
  • Computer Bits (March 1994)
  • Computer Bits (March 1994)
  • Computer Bits (May 1994)
  • Computer Bits (May 1994)
  • Computer Bits (June 1994)
  • Computer Bits (June 1994)
  • Computer Bits (July 1994)
  • Computer Bits (July 1994)
  • Computer Bits (October 1994)
  • Computer Bits (October 1994)
  • Computer Bits (November 1994)
  • Computer Bits (November 1994)
  • Computer Bits (December 1994)
  • Computer Bits (December 1994)
  • Computer Bits (January 1995)
  • Computer Bits (January 1995)
  • Computer Bits (February 1995)
  • Computer Bits (February 1995)
  • Computer Bits (March 1995)
  • Computer Bits (March 1995)
  • Computer Bits (April 1995)
  • Computer Bits (April 1995)
  • CMOS Memory Settings - What To Do When The Battery Goes Flat (May 1995)
  • CMOS Memory Settings - What To Do When The Battery Goes Flat (May 1995)
  • Computer Bits (July 1995)
  • Computer Bits (July 1995)
  • Computer Bits (September 1995)
  • Computer Bits (September 1995)
  • Computer Bits: Connecting To The Internet With WIndows 95 (October 1995)
  • Computer Bits: Connecting To The Internet With WIndows 95 (October 1995)
  • Computer Bits (December 1995)
  • Computer Bits (December 1995)
  • Computer Bits (January 1996)
  • Computer Bits (January 1996)
  • Computer Bits (February 1996)
  • Computer Bits (February 1996)
  • Computer Bits (March 1996)
  • Computer Bits (March 1996)
  • Computer Bits (May 1996)
  • Computer Bits (May 1996)
  • Computer Bits (June 1996)
  • Computer Bits (June 1996)
  • Computer Bits (July 1996)
  • Computer Bits (July 1996)
  • Computer Bits (August 1996)
  • Computer Bits (August 1996)
  • Computer Bits (January 1997)
  • Computer Bits (January 1997)
  • Computer Bits (April 1997)
  • Computer Bits (April 1997)
  • Windows 95: The Hardware That's Required (May 1997)
  • Windows 95: The Hardware That's Required (May 1997)
  • Turning Up Your Hard Disc Drive (June 1997)
  • Turning Up Your Hard Disc Drive (June 1997)
  • Computer Bits (July 1997)
  • Computer Bits (July 1997)
  • Computer Bits: The Ins & Outs Of Sound Cards (August 1997)
  • Computer Bits: The Ins & Outs Of Sound Cards (August 1997)
  • Computer Bits (September 1997)
  • Computer Bits (September 1997)
  • Computer Bits (October 1997)
  • Computer Bits (October 1997)
  • Computer Bits (November 1997)
  • Computer Bits (November 1997)
  • Computer Bits (April 1998)
  • Computer Bits (April 1998)
  • Computer Bits (June 1998)
  • Computer Bits (June 1998)
  • Computer Bits (July 1998)
  • Computer Bits (July 1998)
  • Computer Bits (November 1998)
  • Computer Bits (November 1998)
  • Computer Bits (December 1998)
  • Computer Bits (December 1998)
  • Control Your World Using Linux (July 2011)
  • Control Your World Using Linux (July 2011)
Articles in this series:
  • Error Analyser For CD Players, Pt.1 (July 1991)
  • Error Analyser For CD Players, Pt.1 (July 1991)
  • Error Analyser For CD Players, Pt.2 (August 1991)
  • Error Analyser For CD Players, Pt.2 (August 1991)
  • Error Analyser For CD Players, Pt.3 (November 1991)
  • Error Analyser For CD Players, Pt.3 (November 1991)
Articles in this series:
  • The Technology Letters, Pt.2 (January 1989)
  • The Technology Letters, Pt.2 (January 1989)
  • The Story Of Electrical Energy (July 1990)
  • The Story Of Electrical Energy (July 1990)
  • The Story Of Electrical Energy; Pt.2 (August 1990)
  • The Story Of Electrical Energy; Pt.2 (August 1990)
  • The Story Of Electrical Energy; Pt.3 (September 1990)
  • The Story Of Electrical Energy; Pt.3 (September 1990)
  • The Story Of Electrical Energy; Pt.4 (October 1990)
  • The Story Of Electrical Energy; Pt.4 (October 1990)
  • The Story Of Electrical Energy; Pt.5 (November 1990)
  • The Story Of Electrical Energy; Pt.5 (November 1990)
  • The Story Of Electrical Energy; Pt.6 (December 1990)
  • The Story Of Electrical Energy; Pt.6 (December 1990)
  • The Story Of Electrical Energy; Pt.7 (January 1991)
  • The Story Of Electrical Energy; Pt.7 (January 1991)
  • The Story Of Electrical Energy; Pt.8 (February 1991)
  • The Story Of Electrical Energy; Pt.8 (February 1991)
  • The Story Of Electrical Energy; Pt.9 (March 1991)
  • The Story Of Electrical Energy; Pt.9 (March 1991)
  • The Story Of Electrical Energy; Pt.10 (May 1991)
  • The Story Of Electrical Energy; Pt.10 (May 1991)
  • The Story Of Electrical Energy; Pt.11 (July 1991)
  • The Story Of Electrical Energy; Pt.11 (July 1991)
  • The Story Of Electrical Energy; Pt.12 (August 1991)
  • The Story Of Electrical Energy; Pt.12 (August 1991)
  • The Story Of Electrical Energy; Pt.13 (September 1991)
  • The Story Of Electrical Energy; Pt.13 (September 1991)
  • The Story Of Electrical Energy; Pt.14 (October 1991)
  • The Story Of Electrical Energy; Pt.14 (October 1991)
  • The Story Of Electrical Energy; Pt.15 (November 1991)
  • The Story Of Electrical Energy; Pt.15 (November 1991)
  • The Story Of Electrical Energy; Pt.16 (December 1991)
  • The Story Of Electrical Energy; Pt.16 (December 1991)
  • The Story Of Electrical Energy; Pt.17 (January 1992)
  • The Story Of Electrical Energy; Pt.17 (January 1992)
  • The Story Of Electrical Energy; Pt.18 (March 1992)
  • The Story Of Electrical Energy; Pt.18 (March 1992)
  • The Story Of Electrical Energy; Pt.19 (August 1992)
  • The Story Of Electrical Energy; Pt.19 (August 1992)
  • The Story of Electrical Energy; Pt.20 (September 1992)
  • The Story of Electrical Energy; Pt.20 (September 1992)
  • The Story Of Electrical Energy; Pt.21 (November 1992)
  • The Story Of Electrical Energy; Pt.21 (November 1992)
  • The Story Of Electrical Energy; Pt.22 (January 1993)
  • The Story Of Electrical Energy; Pt.22 (January 1993)
  • The Story of Electrical Energy (April 1993)
  • The Story of Electrical Energy (April 1993)
  • The Story Of Electrical Energy; Pt.24 (May 1993)
  • The Story Of Electrical Energy; Pt.24 (May 1993)
  • The Story Of Electrical Energy; Pt.24 (June 1993)
  • The Story Of Electrical Energy; Pt.24 (June 1993)
AMATEUR RADIO BY GARRY CRATT, VK2YBX Build this simple turnstile antenna for weather satellite reception Interested in listening to signals from the polar-orbiting or geostationary weather satellites? This simple antenna can be built for -a few dollars yet will give good results. Most amateur operators appreciate that, for ground based communications , vertically polarised antennas with a low angle of radiation perform best. By stacking dipoles vertically, the radiation pattern is compressed so that the usable "gain" is radiated towards the horizon , thus theoretically encompassing any receiving stations located on the ground. Conversely, for airborne communications, an antenna having a higher angle ofradiation is desired, since the signal must be radiated upwards instead of hugging the ground. The same applies for the reception of weather satellite signals. The easiest weather satellite signals that can be received using simple equipment are those radiated by the polar orbiting APT satellites. These satellites broadcast circularly polarised signals located around 137MHz and have typical output powers of DIPOLE 2 / FEEOPDINT '-DI )J4 PHASING LINE Fig.1: basic layout of a turnstile antenna (groundplane not shown). It consists of two 1/2-wavelength dipoles mounted at 90° and fed 90° out of phase. Note the 1/4-wavelength phasing line used to feed the second dipole. about 5W or so. Due to their polar orbit, they pass quite close to the Earth's surface at heights ranging from 110-BOOkm. The signals received on Earth from these satellites are much stronger than those received from geostationary satellites, which orbit at 37,000km. In any case, the optimum antenna for the reception of weather satellite signals is one which combines circular polarisation and a high angle of radiation. The turnstile antenna This photograph shows the general construction of the turnstile antenna. The reflector was made from small mesh chicken wire attached to a wooden baseplate, while the dipoles consist of threaded steel rods attached to a wooden mast. A right-angle metal bracket is used to secure the mast to baseplate. Although a simple groundplane antenna having a 1/4-wavelength radiator can be used in applications requiring a high angle of radiation, a far more useful antenna is the "turnstile" - so named because of its resemblance to a supermarket turnstile. A turnstile antenna consists of two 1/2-wavelength dipoles mounted at goo and fed goo out of phase. When mounted above a suitabl e reflector as NOVEMBER 1991 53 This close-up view shows how the dipole elements & the phasing harness are fitted to the mast. The threaded rod dipoles make it easy to attach the phasing harness using solder lugs & nuts. shown in one of the photographs, the radiation pattern fulfils both our requirements (see Fig.2). The response of the antennc!, directly above th e dipoles is circularly polarised, while at angles between 45° and 0°, the response is elliptically polarised. In this regard, the reflector spacing is an important consideration, as it determines both the radiation pattern and the feed point impedance of the antenna. Reflector spacing As can be seen from Fig.3, if the reflector spacing is increased from 0.22 to 0.37 of a wavelength, the vertical response is reduced while the response at lower angles (30-50°) is improved. A further consequence of this reflector spacing is that the characteristic impedance of each dipole is very close to 100 ohms. In order to feed the two dipoles out of phase, they must be connected via a 1/ 4-wave phasing harness. Fig.1 shows this arrangement. As with other phasing harnesses, the physical length of the harness is reduced below a 1/4wavelength according to the velocity factor of the coaxial cable used. By selecting a 0.37 wavelength reflector spacing, this arrangement can be fed with standard 50-ohm coaxial cable, thus greatly simplifying the construction compared with other reflector spacings requiring a matching section. In practice, the antenna response is also improved for receiving polar orbiting satellites. The accomp anying photographs show the general construction of the antenna. The reflector can be made from small mesh chicken wire or phosphor-bronze m esh, while the dipoles can be made from aluminium tubing or steel or brass rods. To protect it 1 Fig.4: this diagram shows the dimensions required for a 1/4wavelength phasing line. SILICON CHIP Fig.3: increasing the reflector spacing of a turnstile antenna to 0.37 wavelength reduces the vertical response but improves the response at lower angles (30-50°). This makes the antenna suitable for satellites passing at relatively low angles but still gives useful pickup for satellites passing almost directly overhead & for geostationary satellites. Construction 260mm 54 Fig.2: shown at top is the typical radiation pattern from a groundplane antenna, while immediately above is the pattern for a turnstile antenna with a reflector spacing of 0.22 wavelength. Note the dramatically improved vertical response of the turnstile antenna. from the weather, the entire antenna should be sealed using "Estapol" or some other plastic paint/sealant. As constructed, the antenna has a modest gain of around 6dB , which is quite sufficient for the reception of polar orbiting weather satellites. Also, there is no specific requirement for the antenna to be elevated to any great degree above the ground, so long as the "view" is largely unobstructed from about 20° above the horizontal. We built the prototype out of scraps of "chipboard" and softwood planks. However, for a long-lasting antenna, chipboard is no good as it deteriorates rapidly in wet weather. If you want it to last, use good quality timber and These photographs show the results that can be obtained by connecting the turnstile antenna to suitable receiving equipment. All four images are from GMS-4 but you can also tune into the polar-orbiting satellites. prime and paint it for weather resistance. The main mast, which holds the dipole elements in place, is centrally located on the baseboard by a right angle bracket, available from most hardware stores. The dipole elements are made from zinc-plated threaded steel rods and are connected to the coaxial cable using solder lugs. Mounting the dipoles The dipole elements are mounted by drilling horizontally through the mast at 10mm intervals. The elements are then mounted by passing them through the timber and securing them using steel nuts and washers. Another advantage of using this method is that the 1/4-wavelength phasing section can be pre-fabricated on the workbench. We used heatshrink tubing to seal the jacket of the coaxial phasing section. As the fe ed point impedance of the dipoles at 0.37 wavelength reflector spacing is about 100 ohms, the phasing line must be made from 75-ohm coaxial cable. Fig.4 shows the dimensions of this part of the antenna. The coax feed can be standard 50ohm type and solder lugs are recommended for the connections to the dipoles. The reflector uses two overlapping layers of small diameter chicken wire, available from most hardware stores (as is- the threaded rod). As this wire is only available in 900mm wide strips, a total length of 2.6 metres is required to cover all of the base plate. We used galvanised staples to secure the wire to the baseboard and overlapped the screen to give the fullsized reflector dimensions. Perhaps this simple antenna, which can be used with an inexpensive scanning receiver or a modified 2-metre receiver, will encourage readers to further explore the world of weather satellite reception. Just to whet your appetite, we have included several photos of full-screen video pictures, obtained from the more sophisticated GMS weather satellites, just to show the remarkable results that are possible. Of course, you'll need some extra equipment in addition to your scanning receiver to obtain pictures like these , including a computer interface and, possibly, a video printer. We'll have more to say about this in a future article. In the meantime, have fun tuning into those satellite signals. Further reading (1). Australian Electronics Monthly, July 1986. (2). The ARRL Antenna Book. (3). Weather Satellite Handbook, by Ralph E. Taggart. SC NOVEMBER 1991 55